Skip to main content

A study of the mechanical systems contributing to the design and performance of a picosatellite’s mission in low-Earth orbit (LEO) was performed through design and analysis. The unique architecture of this satellite stems from a form factor established by the internationally recognized CubeSat Program. This CubeSat-Plus architecture limits the satellite’s size to be no larger than a 10 x 10 x 15 cm cube with an overall mass not exceeding 2 kg.

This document summarizes the activities of the WPI Nanosat-3 (N3) program proposed in response to a BAA by the AFOSR and AIAA (University Nanosat Program, AFOSR BAA 2003-02) . Specifically, we proposed to have WPI undergraduate and graduate student teams under the direct guidance of WPI faculty, develop a nanosat that would be used as a vehicle to investigate:

The Crew Exploration Vehicle (CEV) is the next generation space vehicle to follow the Space Shuttle. A design with the inclusion of a Composite Pressure Vessel (CPV) has been assessed for its thermal response. The temperature distribution on the CPV that results from the heat produced by internal spacecraft systems and external space environments was calculated as part of a project-level assessment to understand thermomechanical stresses.

The United States Air Force and commercial aerospace industry recognize the importance of moving towards smaller, better, and cheaper spacecraft to support the nation’s increasing dependence on space-based technologies. Whether large or small, all spacecraft will require the same basic bus systems and environmental protection, simply scaled to fit the mission. The varying thermal environment in space is particularly important to spacecraft design and operation because of its affect on hardware performance and survivability.

This paper summarizes the thermal math model correlation effort for the Fast Affordable Science and Technology SATellite (FASTSAT-HSV01), which was designed, built and tested by NASA's Marshall Space Flight Center (MSFC) and multiple partners. The satellite launched in November 2010 on a Minotaur IV rocket from the Kodiak Launch Complex in Kodiak, Alaska. It carried three Earth science experiments and two technology demonstrations into a low Earth circular orbit with an inclination of 72° and an altitude of 650 kilometers.

Lithium-ion batteries (LIBs) are replacing the Nickel–Hydrogen batteries used on the International Space Station (ISS). Knowing that LIB efficiency and survivability are greatly influenced by temperature, this study focuses on the thermo-electrochemical analysis of LIBs in space orbit. Current finite element modeling software allows for advanced simulation of the thermo-electrochemical processes; however the heat transfer simulation capabilities of said software suites do not allow for the extreme complexities of orbital-space environments like those experienced by the ISS.

Structural and thermal engineers currently work independently of each other using unrelated tools, models, and methods. Without the ability to rapidly exchange design data and predicted performance, the achievement of the ideals of concurrent engineering is not possible.