CRTech Consulting

Custom Software Solutions

C&R Technologies ("CRTech") provides best-of-class user-extensible thermal design and fluid flow software, which allows us to provide custom software solutions to our customers. We can extend our codes to meet your unique needs by adding custom components, subroutines, enhanced fluid capabilities, or creating unique APIs (Advanced Programmer Interfaces) and integration tools for concurrent engineering. If you have unique requirements demanding custom solutions, please contact us.

Consulting Services

There may be times that you are not able to purchase our software, learn how to use it, and solve your problem within your budget and time constraints. CRTech welcomes the opportunity to solve this dilemma for you. Our staff of engineers (mechanical, chemical, and nuclear) individually have from 15 to 35+ years of experience.

We offer a full analysis consulting service for just this problem. We build your model, solve your problem, and deliver the solution and the model to you using our software. The problem will be set up for you to make changes and easily rerun the model to get new answers. We can deliver a report on the results we obtained, along with detailed instructions on how you can modify the model and rerun it for additional analysis cases. For more information on this service, please contact us or request a quote.

dispersed vs. coalesced front

Tuesday, June 26, 2018, 1-2pm PT, 4-5pm ET

This webinar describes flat-front modeling, including where it is useful and how it works. A flat-front assumption is a specialized two-phase flow method that is particularly useful in the priming (filling or re-filling with liquid) of gas-filled or evacuated lines. It also finds use in simulating the gas purging of liquid-filled lines, and in modeling vertical large-diameter piping.

Prerequisites: It is helpful to have a background in two-phase flow, and to have some previous experience with FloCAD Pipes.

Register here for this webinar

FloCAD model of a loop heat pipe

Since a significant portion of LHPs consists of simple tubing, they are more flexible and easier to integrate into thermal structures than their traditional linear cousins: constant conductance and variable conductance heat pipes (CCHPs, VCHPs). LHPs are also less constrained by orientation and able to transport more power. LHPs have been used successfully in many applications, and have become a proven tool for spacecraft thermal control systems.

However, LHPs are not simple, neither in the details of their evaporator and compensation chamber (CC) structures nor in their surprising range of behaviors. Furthermore, there are uncertainties in their performance that must be treated with safety factors and bracketing methods for design verification.

Fortunately, some of the authors of CRTech fluid analysis tools also happened to have been involved in the early days of LHP technology development, so it is no accident that Thermal Desktop ("TD") and FloCAD have the unique capabilities necessary to model LHPs. Some features are useful at a system level analysis (including preliminary design), and others are necessary to achieve a detailed level of simulation (transients, off-design, condenser gradients).

CRTech is offering a four-part webinar series on LHPs and approaches to modeling them. Each webinar is designed to be attended in the order they were presented. While the first webinar presumes little knowledge of LHPs or their analysis, for the last three webinars you are presumed to have a basic knowledge TD/FloCAD two-phase modeling.

Part 1 provides an overview of LHP operation and unique characteristics
Part 2 introduces system-level modeling of LHPs using TD/FloCAD.
Part 3 covers an important aspect of getting the right answers: back-conduction and core state variability.
Part 4 covers detailed modeling of LHPs in TD/FloCAD such that transient operations such as start-up, gravity assist, and thermostatic control can be simulated.