Fluid Properties

Caution: All fluid property ("FPROP") files are provided as a convenience, not as supported products. Use at your own risk, and be sure to validate with other sources. The majority of these files are based on NIST data using REFPROP. These files are updated as new data becomes available and corrections are made without notice; be sure to check back often to make sure you are using the latest versions.

Below are links to download common fluid property descriptions. For a more extensive list of properties which are available from CRTech (or to request a fluid property file, or for help developing a custom fluid file), please review our full table of property descriptions.

Note: The full library of fluid properties are included by installing SINDA/FLUINT Version 6.0 or later. The property files are installed in the public documents folder, which is automatically listed within the FloCAD property browser (a feature of the fluid submodel manager). Those installed files are pre-compiled for faster preprocessing and loading. The files listed below are not normally needed; they are provided a courtesy for customers running older versions of SINDA/FLUINT or who need special or custom variations of the standard collection of properties.

Air Properties
Ammonia Properties
Argon Properties
Carbon Dioxide Properties
Fluorinertâ„¢ Properties
Helium Properties
Hydrogen Properties
Methane Properties
Nitrogen Properties
Oxygen Properties
R134a Properties
Water Properties

dispersed vs. coalesced front

Tuesday, June 26, 2018, 1-2pm PT, 4-5pm ET

This webinar describes flat-front modeling, including where it is useful and how it works. A flat-front assumption is a specialized two-phase flow method that is particularly useful in the priming (filling or re-filling with liquid) of gas-filled or evacuated lines. It also finds use in simulating the gas purging of liquid-filled lines, and in modeling vertical large-diameter piping.

Prerequisites: It is helpful to have a background in two-phase flow, and to have some previous experience with FloCAD Pipes.

Register here for this webinar

FloCAD model of a loop heat pipe

Since a significant portion of LHPs consists of simple tubing, they are more flexible and easier to integrate into thermal structures than their traditional linear cousins: constant conductance and variable conductance heat pipes (CCHPs, VCHPs). LHPs are also less constrained by orientation and able to transport more power. LHPs have been used successfully in many applications, and have become a proven tool for spacecraft thermal control systems.

However, LHPs are not simple, neither in the details of their evaporator and compensation chamber (CC) structures nor in their surprising range of behaviors. Furthermore, there are uncertainties in their performance that must be treated with safety factors and bracketing methods for design verification.

Fortunately, some of the authors of CRTech fluid analysis tools also happened to have been involved in the early days of LHP technology development, so it is no accident that Thermal Desktop ("TD") and FloCAD have the unique capabilities necessary to model LHPs. Some features are useful at a system level analysis (including preliminary design), and others are necessary to achieve a detailed level of simulation (transients, off-design, condenser gradients).

CRTech is offering a four-part webinar series on LHPs and approaches to modeling them. Each webinar is designed to be attended in the order they were presented. While the first webinar presumes little knowledge of LHPs or their analysis, for the last three webinars you are presumed to have a basic knowledge TD/FloCAD two-phase modeling.

Part 1 provides an overview of LHP operation and unique characteristics
Part 2 introduces system-level modeling of LHPs using TD/FloCAD.
Part 3 covers an important aspect of getting the right answers: back-conduction and core state variability.
Part 4 covers detailed modeling of LHPs in TD/FloCAD such that transient operations such as start-up, gravity assist, and thermostatic control can be simulated.