Thermally Stratified Tanks

Thermal Stratification of a Cryogenic Tank
Is the tank half empty or half full?

Even optimists have a tough time predicting the pressure within a cryogenic tank, much less sizing pressurant bottles and designing pressure control systems based on complex transient scenarios. If the tank has been left long enough for thermal stratification to appear, it is also tough to predict the temperatures of extracted liquid even though this is often a critical parameter if you need to provide adequate subcooling for downstream pumps.

CFD tools can predict liquid positioning and slow recirculation in the nearly-stagnant ullage (vapor/pressurant) and liquid zones, especially for steady state solutions. They must often compromise thermodynamics (e.g., boiling, dissolution) and are too slow to simulate important transient events like fill, drain, and pressurization. Transient analysis of hours- or days-long stratification isn't feasible.

Flow network codes have difficulty with thermal stratification and with associated natural convection recirculation patterns.

CRTech has unique tools for modeling liquid-filled vessels, including treatment of the large uncertainties involved and all the important physics. We are continuing to develop new methods for handling the special needs of thermally stratified modeling, so check back for updates.

long term storage of LH2
Long-term storage of liquid hydrogen using an internal heat exchanger and vapor-cooled shield

For more information and sample models, please visit our forum post on modeling stratified tanks.

See also: Marine and Aircraft Fuel Tanks, LNG Transport by Rail Car, Cryogenic Design

dispersed vs. coalesced front

Tuesday, June 26, 2018, 1-2pm PT, 4-5pm ET

This webinar describes flat-front modeling, including where it is useful and how it works. A flat-front assumption is a specialized two-phase flow method that is particularly useful in the priming (filling or re-filling with liquid) of gas-filled or evacuated lines. It also finds use in simulating the gas purging of liquid-filled lines, and in modeling vertical large-diameter piping.

Prerequisites: It is helpful to have a background in two-phase flow, and to have some previous experience with FloCAD Pipes.

Register here for this webinar

FloCAD model of a loop heat pipe

Since a significant portion of LHPs consists of simple tubing, they are more flexible and easier to integrate into thermal structures than their traditional linear cousins: constant conductance and variable conductance heat pipes (CCHPs, VCHPs). LHPs are also less constrained by orientation and able to transport more power. LHPs have been used successfully in many applications, and have become a proven tool for spacecraft thermal control systems.

However, LHPs are not simple, neither in the details of their evaporator and compensation chamber (CC) structures nor in their surprising range of behaviors. Furthermore, there are uncertainties in their performance that must be treated with safety factors and bracketing methods for design verification.

Fortunately, some of the authors of CRTech fluid analysis tools also happened to have been involved in the early days of LHP technology development, so it is no accident that Thermal Desktop ("TD") and FloCAD have the unique capabilities necessary to model LHPs. Some features are useful at a system level analysis (including preliminary design), and others are necessary to achieve a detailed level of simulation (transients, off-design, condenser gradients).

CRTech is offering a four-part webinar series on LHPs and approaches to modeling them. Each webinar is designed to be attended in the order they were presented. While the first webinar presumes little knowledge of LHPs or their analysis, for the last three webinars you are presumed to have a basic knowledge TD/FloCAD two-phase modeling.

Part 1 provides an overview of LHP operation and unique characteristics
Part 2 introduces system-level modeling of LHPs using TD/FloCAD.
Part 3 covers an important aspect of getting the right answers: back-conduction and core state variability.
Part 4 covers detailed modeling of LHPs in TD/FloCAD such that transient operations such as start-up, gravity assist, and thermostatic control can be simulated.