This document summarizes the activities of the WPI Nanosat-3 (N3) program proposed in response to a BAA by the AFOSR and AIAA (University Nanosat Program, AFOSR BAA 2003-02) . Specifically, we proposed to have WPI undergraduate and graduate student teams under the direct guidance of WPI faculty, develop a nanosat that would be used as a vehicle to investigate:

  • A GPS based navigation and orientation determination system
  • the use of a powder metallurgy (P/M) component design methods to develop the primary satellite bus structure

Program highlights include the successful development of; i) a high quality satellite tracking and communications system, ii) powder metallurgy components of the satellite bus structure, iii) the sensor and communications subsystem, iv) the triple modular redundant processor system, v) the GPS navigation and orientation system, vi) a very high reliability and efficiency solar cell power system using custom designed switching power supplies, and vii) the satellite navigation/stability system. Also completed in conjunction with this NS3 program was a detailed MATLAB/Simulink model of the orbital mission. Finally, completed in parallel with the NS3 program but not supported by it was a prototype Picosat that built upon technology developed as part of the NANOSAT 3 program.

Upload Files
Electrical and Computer Engineering, Worcester Polytechnic Institute
Fred J Looft