Skip to main content

The Mars Helicopter will be a technology demonstration conducted during the Mars 2020 mission. The primary mission objective is to achieve several 90-second flights and capture visible light images via forward and nadir mounted cameras. These flights could possibly provide reconnaissance data for sampling site selection for other Mars surface missions. The helicopter is powered by a solar array, which stores energy in secondary batteries for flight operations, imaging, communications, and survival heating.

Productivity bottlenecks for integrated thermal, structural, and optical design activities were identified and systematically eliminated, making possible automated exchange of design information between different engineering specialties.

Automated design space exploration was implemented and demonstrated in the form of the multidisciplinary optimization of the design of a space-based telescope.

Maintaining low temperature payloads through atmospheric reentry and ground recovery is becoming a larger focus in the space program as work in biology, cryogenic and other temperature dependent sciences becomes a higher goal on the International Space Station (ISS) and extraterrestrial surfaces. Paragon analyzes reentry system thermal control, particularly technology regarding small thermally controlled payloads anticipated for use in sample return from the International Space Station.

SINDA/FLUINT (Ref 1-7) is the NASA-standard heat transfer and fluid flow analyzer for thermal control systems. Because of its general formulation, it is also used in other aerospace specialties such as environmental control (ECLSS) and liquid propulsion, and in terrestrial industries such as electronics packaging, refrigeration, power generation, and transportation industries.

This paper describes revolutionary advances in SINDA/FLUINT, the NASA-standard heat transfer and fluid flow analyzer, changing it from a traditional point-design simulator into a tool that can help shape preliminary designs, rapidly perform parametrics and sensitivity studies, and even correlate modeling uncertainties using available test data.

Over the past 15 years, the industry standard tool for thermal analysis, SINDA, has been expanded to include advanced thermodynamic and hydrodynamic solutions (“FLUINT”). With the recent culmination of the unique modeling tools that are described in this paper, and with concurrent expansions described elsewhere (Ref 1), SINDA/ FLUINT has arguably become the most complete generalpurpose thermohydraulic network analyzer that is available.

Recent years have witnessed more improvement to the SINDA/FLUINT thermohydraulic analyzer than at any other time in its long history. These improvements have included not only expansions in analytic power, but also the additions of high-level modules that offer revolutions in thermal/ fluid engineering itself.

The major influence on the reliability of electronics is temperature, yet thermal/fluid modeling is plagued with uncertainties and unknowns. Nonetheless, if appropriate values of these unknown parameters are available for any specific electronics package, then its temperature response can be accurately predicted using modern thermal/fluid analysis tools.