The Mars Helicopter will be a technology demonstration conducted during the Mars 2020 mission. The primary mission objective is to achieve several 90-second flights and capture visible light images via forward and nadir mounted cameras. These flights could possibly provide reconnaissance data for sampling site selection for other Mars surface missions. The helicopter is powered by a solar array, which stores energy in secondary batteries for flight operations, imaging, communications, and survival heating.

Loss in optical fiber coupling efficiency and transmission are computed for a telecommunication optical circulator. Optical performance degradation is due to thermally induced optical errors in the two beam splitter cubes. The computation of the optical errors is discussed for two materials and the effects illustrated. Bulk volumetric absorption of the incident laser radiation from the input optical fiber and surface absorption via the coatings on the beam splitter interface generate temperature gradients.

This paper provides an overview of the non-grey radiation modeling capabilities of Cullimore and Ring’s Thermal Desktop® Version 4.8 SindaWorks software. The non-grey radiation analysis theory implemented by Sindaworks and the methodology used by the software are outlined.

This paper summarizes the thermal math model correlation effort for the Fast Affordable Science and Technology SATellite (FASTSAT-HSV01), which was designed, built and tested by NASA's Marshall Space Flight Center (MSFC) and multiple partners. The satellite launched in November 2010 on a Minotaur IV rocket from the Kodiak Launch Complex in Kodiak, Alaska. It carried three Earth science experiments and two technology demonstrations into a low Earth circular orbit with an inclination of 72° and an altitude of 650 kilometers.

Most radiation analysis tools in use in the aerospace industry assume that grey conditions hold. That is, over the range of temperatures considered, optical properties are assumed to have a constant value with respect to wavelength. This reasonable approximation for systems that are near room temperature may show significant error at temperature extremes, particulary for conductive materials at cryogenic temperatures. Other areas where non-grey analysis may be appropriate is in furnace and lamp design, and in systems with specialized optical filters such as thermalphotovoltaics.