Automated design space exploration was implemented and demonstrated in the form of the multidisciplinary optimization of the design of a space-based telescope.

Traditionally, the preliminary thermal design is behind the mechanical and electrical spacecraft design. Many factors contribute to this including a lack of detailed physical characteristics of the spacecraft and knowledge of the distribution of the thermal loads within the spacecraft. Therefore, the thermal design typically reacts to the mechanical and electrical designs. The thermal analyst gets a configuration and then tries to wrap an acceptable solution around it.

Complex products are best developed in a collaborative design environment where engineering data and CAD/CAE results can be shared across engineering discipline boundaries within a common software interface. A new software tool that allows Electro-Optical (EO) sensors to be developed in this manner has been used to conduct an integrated Structural/Thermal/Optical (STOP) analysis of a critical lens subassembly in a flight payload. This paper provides a description of the software environment and a summary of the technical results that were produced with it.

SINDA/FLUINT (Ref 1-7) is the NASA-standard heat transfer and fluid flow analyzer for thermal control systems. Because of its general formulation, it is also used in other aerospace specialties such as environmental control (ECLSS) and liquid propulsion, and in terrestrial industries such as electronics packaging, refrigeration, power generation, and transportation industries.

This paper describes revolutionary advances in SINDA/FLUINT, the NASA-standard heat transfer and fluid flow analyzer, changing it from a traditional point-design simulator into a tool that can help shape preliminary designs, rapidly perform parametrics and sensitivity studies, and even correlate modeling uncertainties using available test data.

Recent years have witnessed more improvement to the SINDA/FLUINT thermohydraulic analyzer than at any other time in its long history. These improvements have included not only expansions in analytic power, but also the additions of high-level modules that offer revolutions in thermal/ fluid engineering itself.

Despite recent advances in computer aided design (CAD) based tools, spacecraft thermal analysis remains outside the realm of finite element method (FEM) based analysis. The primary complaints against FEM often cited are:

Structural and thermal engineers currently work independently of each other using unrelated tools, models, and methods. Without the ability to rapidly exchange design data and predicted performance, the achievement of the ideals of concurrent engineering is not possible.