With the release of Thermal Desktop 6.0, users now had the ability to interface with some of the many elements and constructs of a Thermal Desktop model through external applications developed using the TD API (Application Programming Interface). This file allows applications to be developed in the .NET framework and interface to a number of object types within a Thermal Desktop model. The release of 6.1 expands the subset of objects able to be manipulated and now includes the raw geometrical information of surfaces. With the release of 6.1, the API was now referred to as OpenTD.

This paper provides an overview of the non-grey radiation modeling capabilities of Cullimore and Ring’s Thermal Desktop® Version 4.8 SindaWorks software. The non-grey radiation analysis theory implemented by Sindaworks and the methodology used by the software are outlined.

Most radiation analysis tools in use in the aerospace industry assume that grey conditions hold. That is, over the range of temperatures considered, optical properties are assumed to have a constant value with respect to wavelength. This reasonable approximation for systems that are near room temperature may show significant error at temperature extremes, particulary for conductive materials at cryogenic temperatures. Other areas where non-grey analysis may be appropriate is in furnace and lamp design, and in systems with specialized optical filters such as thermalphotovoltaics.