Advancements in satellite technologies are increasing the power density of electronics and payloads. When the power consumption increases within a limited volume, waste heat generation also increases and this necessitates a proper and efficient thermal management system. Mostly, micro and nanosatellites use passive thermal control methods because of the low cost, no additional power requirement, ease of implementation, and better thermal performance. Passive methods lack the ability to meet certain thermal requirements on larger and smaller satellite platforms.

Thermal Desktop has the capability of modeling free molecular heat transfer (FMHT), but limitations are observed when working with large models during transient operation. To overcome this limitation, a MatLab program was developed that processes the Thermal Desktop free molecular conductors. It sets up the logic and arrays for the Thermal Desktop GUI used by SINDA/FLUINT. The theory of free molecular heating is presented along with the process required to setup the conductors, arrays, logic and Fortran subroutines for FMHT modeling in Thermal Desktop.