Advances in computer technologies and manufacturing processes allow creation of highly sophisticated components in compact platform. For example, a small scale satellite, such as the CubeSat, can now be used for scientific research in space rather than big scale project like the International Space Station (ISS). Recently a team of undergraduate and graduate students at SJSU has the opportunity to collaborate on designing and building a miniature size CubeSat with the dimension of 10x10x10 cm. Although the integration of compact electronics allows sophisticated scientific experiments and missions to be carried out in space, the thermal control options for such small spacecraft are limited. For example, because of its small size there is no room for dedicated radiator or insulation panels. To minimize mass of the thermal control system while keeping the electronics at safe operating conditions, this thesis aims at studying the external orbital radiation heat flux the CubeSat is expected to expose to and the steady state heat conduction of the internal electronics. If the operating temperature from these heating conditions causes issue, appropriate thermal control solutions will be presented.

Upload Files
Source
San José State University
Author
Dai Q. Dinh