
51st International Conference on Environmental Systems ICES-2022-396
10-14 July 2022, St. Paul, Minnesota

Development of Improved Thermal Analysis Capabilities at

the NASA Goddard Space Flight Center

Hume L. Peabody1 and Eric Yee2

NASA-GSFC, Greenbelt, MD 20771

Goddard Space Flight Center (GSFC) has been developing a framework of additional

analysis capabilities to aid in the verification, development, and execution of thermal models

using the OpenTD Application Programming Interface (API). This paper provides a brief

overview of the data structures, properties, methods, and relationships between the objects

accessible through the current API and describes some of the algorithms necessary to

implement the desired functions at GSFC. Some example code snippets are also provided to

aid potential users in the development of their own utilities. Following the overview are

descriptions and algorithm methodologies of the new capabilities added to the GSFC

framework, including: a new PI heater/controller approach for improved steady state

predictions, selective copying of symbol over-rides from one source CaseSet to destination

CaseSet(s), comparison of submodel object counts between a source and destination model to

verify model integration, comparison of thermo-optical and thermo-physical properties

between models, and improved display of extracted thermo-optical and thermo-physical

properties for documentation.

Nomenclature

API = Application Programming Interface NASA = National Aeronautics and Space Administration

GMM = Geometric Math Model SINDA = Systems Integrated Numerical Difference Analyzer

GSFC = Goddard Space Flight Center PID = Proportional-Integral-Derivative

GUI = Graphical User Interface TMM = Thermal Math Model

MLI = Multi Layer Insulation

I. Introduction

hermal Desktop® is an analysis tool commonly used by NASA-GSFC for the thermal modeling of spacecraft

and instruments. It utilizes the AutoCAD program as the front-end Graphical User Interface (GUI) to allow

analysts to construct geometric math models (GMM, which are used to compute radiative exchange factors and

radiative heatloads from celestial sources) as well as generating a network thermal math model (TMM, which is

solved to predict temperatures). Thermal Desktop has recently added an Application Programming Interface (API)

beginning with version 6.0 and has extended the capabilities of the API with subsequent releases. Since the inclusion

of the API, GSFC has utilized the capabilities offered to develop its own framework of thermal analysis utilities1,2 to

interface with model data and to automate repetitive tasks.

With the latest OpenTDv62 API, users now have full access to model data for all surface types, including finite

elements, which were not available in previous versions. Leveraging these new additions, GSFC has developed

additional utilities and capabilities to add to its existing framework. These new features include: a Proportional-

Integral (PI) controller algorithm for steady state SINDA solutions and utilities to aid in the integration and checkout

of integrated models. Capabilities of this new code consist of: the ability to compare the submodel level object

counts/types across two models, copying selected symbols from a source CaseSet to destination CaseSets, improved

comparison of predictions between model outputs, and improved reporting of thermo-optical and thermophysical

properties for model documentation. This paper outlines some of the basic usage of the API and how the data can be

accessed and describes the GSFC developed utilities and methodologies used to develop them in further detail. It

concludes with an updated compilation of the capabilities of the framework and the current GSFC GUI to access the

utilities.

1 Staff Thermal Engineer, Mail Stop 545, Goddard Space Flight Center, Greenbelt MD 20771.
2 Thermal Engineer, Mail Stop 545, Goddard Space Flight Center, Greenbelt MD 20771.

T

International Conference on Environmental Systems

2

II. Basic API Usage Overview

In order to describe the methodologies employed to develop the utilities listed in the introduction, a brief

overview of the methods and data structures utilized by the API is provided. While code snippets could be provided,

they are deemed beyond the scope of this paper. The intent of this section is to provide just enough information for

an interested user to get started. The API itself is accessed by including a reference to the OpenTDv62.dll in a user’s

.NET compatible project. To establish a connection with Thermal Desktop, a variable of ThermalDesktop type is

created (e.g. Dim TD as New OpenTDv62.ThermalDesktop). Once created, the drawing file to be accessed is

specified by setting the TD.ConnectConfig.DwgPathname property. Following this with a call to the

TD.Connect() method establishes a link with either an existing AutoCAD application that is already open with the

specified drawing file or creates a new instance in which the specified drawing file is subsequently opened. At this

point, all of the exposed data is now available for further investigation or manipulation. In general, two types of

tasks could be developed: those that alter the execution flow and those that query and/or manipulate data.

Most object types can be retrieved as a List(Of ObjectType) by calling the appropriate method [e.g.

TD.GetRectangles()]. Alternately, a single object may also be retrieved knowing its handle, which is the unique

identifier for each object in the AutoCAD database and is generally stored as a 6-character hexadecimal values [e.g.

TD.GetNode(myHandle)]. Each object type includes .AttachedZZZHandles lists, where ZZZ varies by object

type (e.g. Conics, Node, HeatLoad, Object, etc) which provides the linking hierarchy between objects (e.g. a

Contactor that references a Surface, a HeatLoad assigned to a Node). For example, a node object type includes the

.AttachedConicsHandles method, which retrieves a list of all the handles for surfaces related to that node, and

the .AttachedObjectHandles method, which retrieves a list of handles for all the objects (e.g. HeatLoads, Finite

Elements, Conductors, etc.) related to it. Using the .GetEntityTypes method allows each of these handles to be

dereferenced to their object type and the specific instance of each object retrieved for further evaluation.

Understanding the relationships between objects through their related handles was crucial to the development of the

object count utility as well as any future development across dissimilar object types.

While the function names listed above are specific to the OpenTDv62.dll, the software vendor has made efforts

to not “break” the functions with each subsequent release of OpenTD. In fact, future releases would be in their own

file, preventing conflicts if the original library continues to be used with the developed code. Only when a new

library is introduced, perhaps to take advantage of newer features, does the risk of conflicts arise. In fact, during the

development of these tools, upgrading from v6.1 to v6.2 did break some functions that changed between the two

libraries, but the updates to fix the code were very minor. That said, it is in the software vendor’s own interest to

minimize any disruptions to the existing functions in the library to keep end users satisfied and wanting to continue

to use the capability while also reducing the amount of support they would need to provide.

Some of the functions developed by GSFC do not directly interact with the objects in the model, but rather alter

the model execution portion of the analysis process to inject code for specific purposes. In this case, the API is used

modify a case set, execute it as needed, and process the files generated in response to add custom code to perform

additional tasks during model execution. This was first used by GSFC to automate the inclusion of Heater, Heat

Load, and PID Controller logic between the generation of the CondCap file and the execution of the input file2. This

approach was also improved to implement the Radk Filtering options developed previously3. Most recently, this

capability has been expanded to add custom logic for the emulation of PID controllers in steady state solutions to

achieve the setpoint, which is described in the following section.

III. Steady State PID Emulation

PID controlled heaters are difficult to model in steady state solutions as there is no time value on which the

integrator term can operate to achieve the setpoint. Therefore, the proportional term is the only term that can provide

meaningful contributions to the control variable. Some PID algorithms might try to utilize the iteration count as a

pseudo-time substitute, but this becomes difficult with simultaneous solutions which advance the entire solution

each iteration and no mass to dampen the changes between iterations. For this new approach, a predictor-corrector

method was employed to get close to the stable solution before an averaging window is used to generate the final

predictor value. The corrector term is then employed based on the setpoint/sense point relationship to gradually

increase or decrease the control variable. Each time the setpoint is crossed, the adjustment value is decreased until it

reaches a minimal threshold, after which it is set to zero and the duty cycle remains fixed for the remainder of the

solution.

The SINDA input deck is first processed to identify all calls to PID controllers and the setpoint, sense point, and

control variable registers are identified. Further processing is performed in two additional passes through the input

file to identify registers that may reference the control variable but are themselves assigned to the nodal heat

International Conference on Environmental Systems

3

application logic (e.g. PID_1_HeaterPwr = PID_1_DutyCycle * PID_1_AvailablePower). A final pass is made

through the file to determine all the nodes to which heat is applied for each PID controller. With the knowledge of

the control variable, sensing point, setpoint, and related nodes for each controller, the logic is then be written to the

file to be included in the solution.

The complete algorithm (shown in Figure 1) is executed in SINDA and is broken into multiple sequential phases:

ASSUME CONTROL, APPROACH, AVERAGE, APPLY, ADJUST, ACQUIESCE, and ASSIGN. The ASSUME

CONTROL phase begins by storing all the current convergence criteria and recasting the convergence criteria to

zero to prevent solution convergence prior to setpoint achievement. This portion also initializes arrays which store

the relative node locations in SINDA and initializes the average value of the control variable to zero. The

APPROACH phase utilizes the same logic as a steady state damped, proportional heater generated by Thermal

Desktop, with the On/Off range defined as (setpoint) to (setpoint – 4). This phase is used to determine a duty cycle

that is generally close to achieving the desired setpoint through the first X iterations but may result in oscillations

about the setpoint. The next phase is the AVERAGE phase which computes the sum of the heat applied for each

individual node in the model over the next Y iterations as well as the sum of each control variable. Dividing these

sums by Y, results in the average power or average control variable value as the solution moves into the next phase.

The APPLY phase assigns the average nodal heat load to each node and the average control variable for the next Z

iterations in order to provide stable and constant values to the solution for better likelihood of convergence without

the perturbations of PID controllers or other heaters or varying heat in a steady state solution.

The next ADJUST phase is the most crucial, as this is the phase where adjustments are made to the heat applied

based on the relationship between the setpoint and the sense point. If the sense point is above the setpoint, then the

duty cycle is reduced by a fixed delta beginning with a 4% change (e.g. a duty cycle of 0.33 changes to 0.29 if the

sense point is warmer than the setpoint). The opposite is true if the sense point is below the setpoint and the duty

cycle is increased. Constraints are applied to ensure than the duty cycle never exceeds 100% or falls below 0%.

Earlier versions of this algorithm only adjusted the PID control variable, but other non-PID heaters in the model

generally perturbed the solution enough to prevent convergence. Furthermore, previous analysis efforts constrained

the nodal heat values to constant (averaged values) for the last part of the run to improve the likelihood of

convergence, but without the corrector term, the controllers were unlikely to achieve their setpoints. The final

algorithm combines the benefits of both approaches. The relationship between each PID controller and the nodes to

Figure 1. Steady State PID Heater Emulation Flowchart: The algorithm behavior varies with iteration. It first

ASSUMES control to prevent premature convergence by SINDA. Next, it APPROACHes the required heater power

using a damped, proportional approach. After some iterations, it begins the process of AVERAGE-ing these values,

which are the APPLY-ed as a constant averaged value over the next iterations. After applying the average, it

ADJUSTs the heater power to more closely match the setpoint, reducing the adjustment amount every time the

sensing point crosses the setpoint. Lastly, it ACQUIESCEs and return convergence control back to SINDA after a

specified number of iterations or when enough adjustments have reached zero.

International Conference on Environmental Systems

4

which heat is applied must be established in order for this approach to function properly. The heat values at a nodal

level are adjusted every N iterations and the data is tracked to see when the sensing point crosses the setpoint. At

this crossing event, the amount of the adjustment is reduced by half (e.g. 4% to 2%, 2% to 1%, etc.) and the process

continues. The effect is a damping of the overshoot or undershoot about the setpoint until 0.25% is reached, at which

point the adjustment is set to zero and the prediction deemed adequate. Throughout the ADJUST phase, the

percentage of circuits that have had their adjustment reduced to zero is tracked, and once 80% of the controllers are

no longer adjusting, the last ACQUIESCE phase is executed. During this phase, the convergence criteria is set back

to the original values, and the solution continues towards convergence with the few remaining controllers still

adjusting if needed. Upon convergence, the final ASSIGN phase is executed which calls the PIDINIT function in

SINDA with the current

setpoint, sense point, and

control variable, which

initializes the accumulated

error term for the start of a

subsequent transient solution.

During the development of

this technique, other options

were explored and found to not

perform as well as the final

algorithm. This includes only

applying this methodology to

the control variable, which did

not allow for the nodal heat

averaging over all nodes and

often did not converge.

Additionally, the adjustment

was originally envisioned as a

multiplier, but this had a near

negligible effect for very low

duty cycles (e.g. a 1.04/0.96

multiplier on a 4% duty cycle

would take many adjustments

before any meaningful

response could be seen.

The overall goal was a

reduction in the run time for

the Roman Space Telescope

observatory model to achieve

quasi-steady stability. While

the number of iterations needed

to reach steady state increased,

the ability to start the transient

from a closer condition resulted

in less solution time needed to

reach quasi-stability and an

overall reduction in run time.

Figure 2 shows the PID

emulation for one of the

controllers where each phase

can be clearly seen. Figure 3

shows a comparison of the

transient model performance

for a select controller and

resulted in a 33% reduction in

overall run time.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

225

226

227

228

229

230

231

232

233

234

235

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

P
ID

 C
o

n
tr

o
l

(%
)

P
ID

 S
e

n
si

n
g

 T
e

m
p

e
ra

tu
re

 (
K

)

Iteration

PID Controller Performance (Solid: Sensor, Dashed: Control)
OBA_htr_PQ_B4

APPROACH AVERAGE APPLY ADJUST ACQUIESCE

Sensing
Point

Set Point

Control
Variable

Figure 2. Performance of PID Heater Emulation during Steady State

Solution: APPROACH: 0-40, AVERAGE: 41-70, APPLY: 71-90, ADJUST: 91-

210. As the entire solution progresses, full model convergence is achieved around

iteration 300 and the sensing point is very close to the setpoint of 232 K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

264.5

265

265.5

266

266.5

267

0 3600 7200 10800 14400 18000 21600 25200 28800 32400 36000 39600 43200

P
ID

 C
o

n
tr

o
l

(%
)

P
ID

 S
e

n
si

n
g

 T
e

m
p

e
ra

tu
re

 (
K

)

Time (s)

PID Controller Performance (Solid: Sensor, Dashed: Control)

DampProp DampProp+Init PID_SS

Figure 3. Performance of PID Heater with and without Steady State

Emulation: The red curve represents the previous method using a damped

proportional approach for steady state. The blue initialized the PID accumulated

error using the damped proportional values estimated in steady state. Lastly, the

green used the Predictor/Corrector approach and initialized the accumulated

error using the predicted steady state values and was run for half the transient

time reaching quasi-stability considerably sooner. By the end of each run, the

results are similar, although the new approach reaches that point much sooner.

Sens
Sens

Ctrl Ctrl

Setpoint

Approx. Quasi-Steady Ctrl

International Conference on Environmental Systems

5

IV. Object Counts

A fairly common model check when integrating a source model into a destination model in Thermal Desktop is

to compare the object counts between the two models, usually done at a submodel level. Any discrepancies may

indicate differences that should be resolved before concluding the integration was successful. However, for model

deliveries with many submodels, the practicality of comparing possibly more than 50 submodels becomes tedious at

best. Therefore, the API was utilized to programmatically retrieve this information for each submodel from two

models and output the results into a spreadsheet for much easier direct comparison.

The routine begins with evaluating all Domain Tag Sets and storing the information for later use. To optimize

the data retrieval, lists of Submodels, Nodes, Conductors, Contactors, HeatLoads, and Heaters for the entire model

are retrieved and stored in internal variables. Each submodel is processed and the subset of nodes in that submodel

are retrieved using the .Where method of the List(of Node). The type of the node (RC/TD, Diffusion,

Arithmetic, etc) is readily identifiable through direct properties of a node. Surfaces and elements require iterating

that the node’s .AttachedConicsHandles and .AttachedObjectHandles lists.

As these lists are processed for their respective entity types, handles for Surfaces, Solids, Planar Finite Elements,

and Solid Finite Elements are identified and stored separately. Upon processing all the nodes in a submodel, these

four lists of handles are sorted and compressed to remove duplicate handles. The lists of Surfaces, Solids, and Finite

Elements are then processed to identify any assigned MLI nodes, which are not included as unique objects in the

List(of Node) previously retrieved. As each object type is identified, the object itself is retrieved, and then the

properties defining the application of insulation are queried to identify MLI node numbers and store them in a

master insulation node list. This master list is then used to report the number of INS nodes for each submodel.

Lastly, all Conductors, Contactors, HeatLoads, and Heaters are processed. For Conductors, the .From

connection list is a single node and this handle can be compared to all node handles in the submodel subset list to

determine if it matches, and therefore is related to the submodel being processed. The .To list for a Conductor may

contain either nodes or surfaces. Determination of related nodes is the same as for the .To list approach, but for

surface types, the comparison is made to the list of surfaces and planar finite elements determined from

.AttachedConicsHandles and .AttachedObjectHandles methods earlier. In the event that a Domain Tag Set is

specified, it is replaced with the handles to the objects contained in the Domain Tag Set definition processed earlier

in the sequence. If a reference to the currently processed submodel is identified, then the current Conductor is

identified as related to the current submodel and the Conductor count is incremented. Each Conductor is processed

similarly, and the resulting count of all related entities is stored. A similar process is followed for HeatLoads,

Heaters (which also includes the .ApplyConnections and .SensorConnections) and Contactors (which includes

the .From and .To connections).Once all the data is processed, the results are compiled into a 2D matrix comprised

of submodels and object counts for: Total Nodes, Thermal Desktop/RadCAD nodes, Diffusion Nodes, Arithmetic

Nodes, Boundary Nodes, Clone Nodes, Insulation Nodes, Planar Finite Elements, Surfaces, Solids, Solid Finite

Elements, Conductors, HeatLoads, Heaters, Contactors, and Measures. This matrix is then readily output as a

Comma-Separated Values file for subsequent import into a spreadsheet, as shown below in Figure 4.

Figure 4. Sample of Object Count Output: The number of each object type associated with a given submodels is

listed for further evaluation or comparison between two or more models

International Conference on Environmental Systems

6

V. Copy Symbols between CaseSets

One of the more powerful features of

Thermal Desktop is the ubiquitous use of

symbols to control and configure a model.

However, this can also lead to instances

where the incorrect setting of a symbol can

lead to model errors. Furthermore,

incorporating numerous symbol overrides

from a given CaseSet in a delivered model

into a CaseSet in a destination model can be

very time consuming and error prone.

Needing to include these symbols in

multiple destination CaseSets only

compounds this challenge, although the

ability to edit multiple case sets does

alleviate this a bit. But when needing to

integrate multiple subsystem models, each

with their own sets of symbols and values,

for multiple configuration cases (e.g. hot,

cold, survival, stowed, etc), this can quickly

be a time-consuming process to establish

the correct full set of symbols in the

destination model.

Using the API, an interface was

developed which allows for the selection of

a single CaseSet from the source model and

then displays all the symbol overrides,

along with their override values. A listing of all the

CaseSets from a destination model is also provided, and

as a user selects destination CaseSets, the values for

each symbol override in those CaseSets are displayed

alongside the source case set symbols. If the destination

symbol’s values are not identical across all selected

CaseSets, then the value displayed is “Varies”. Use of

this interface has reduced the time necessary to

construct the CaseSet definition in the destination file

considerably by displaying the source values and

allowing for a simple button click to transfer the

symbol definitions to the destination CaseSets.

Another companion capability to copying symbols

between CaseSets was also developed that allows for

comparison of symbols between multiple case sets.

However, this feature goes deeper than a direct symbol

override comparison, evaluating symbols based on

based on the direct override, as well as symbols that are

dependent on the overridden symbol1. Figure 5 shows

the graphical interface for copying symbols from one

CaseSet to another, while Figure 6 shows the results of

a comparison of symbols between multiple case sets.

Figure 6. Symbol Comparison Output: The comparison

of the three selected Destination CaseSets highlights the

differences in symbol values, including the dependencies

of the direct overrides.

Figure 5. Graphical User Interface for Symbol Copy between

CaseSets: The GUI displays the symbol overrides values of the

selected source as well as the corresponding values from the selected

Destination CaseSets

International Conference on Environmental Systems

7

VI. Model Prediction Comparison

Beyond the comparison of object counts and symbols between models, a methodology was also sought to easily

compare predictions between models. Previous efforts1 included the capability to output Heater, Heat Load, and PID

controller information at each timestep. This approach reads through the CondCap file generated by

ThermalDesktop prior to the execution of SINDA. During this read, it identifies SINDA code associated with the

application of HeatLoads, Heaters, and PID controllers and extracts the defining parameters (e.g. ,setpoint, heat

dissipations, control variable, etc). These values and variables associated with them are then processed to generate

specialized logic to be included during the model execution in SINDA, which in turn produces relevant data in the

output file related to the HeatLoads, Heaters and PID controllers at every timestep during the solution. After model

execution, the output file is then processed to extract the data and imports it into a template Microsoft Excel®

workbook for further processing, shown in Figure 7.

 A new comparison utility was recently added to identify significant differences between two model outputs

based on the data on the Summary tab, shown in Figure 8. Two files are supplied to the routine and it evaluates the

data, identifying temperature deviations of more than 2 K and any differences in power (Dissipation, Heater, or

Control Variable). Power differences of more than 5% are identified by bold, red text; power differences between 2-

5% are identified by bold orange text. All differences of consequence are captured as a comment to the worksheet

cell, which includes: the base value, compare value, difference, and percent difference (if a power value). Figure 7

shows the Summary_Compare sheet with the comments identifying significant differences. At this time, the

comparison is keyed off the name of the HeatLoad, Heater, or PID Controller. Therefore, comparisons are limited

based on those names and to the same software, but the general intent is to be able to verify that the performance of

a subsystem model is consistent when integrated to the next higher level of assembly, and the renaming of these

object types should not be expected. Furthermore, these is no effective way to graphically display these values (e.g.

contour plot on a 3D model) as many of the values represent a subset of all nodal values, but do represent critical

locations where heat is applied or temperatures are directly impacted by the application of heat. In this sense,

tabulation of the data and the differences is judged the best means to display this data.

HeatLoad:

Heater:

PID:

Figure 7. Heater, HeatLoad, PID Controller Summary Sheet: The Summary sheet shows the critical temperature

and power data for all HeatLoads, Heaters, and PID Controllers found in a model (Headers enlarged)

Figure 8. Heater, HeatLoad, PID Controller Summary_Compare Sheet: The Summary_Compare sheet

highlights differences between two files as comments for each cell (including the two values, difference, and percent

difference for power values) with a comment in A1 listing the compare filename for reference

International Conference on Environmental Systems

8

VII. Property Documentation

Thermal Desktop stores optical and material property data in text files and displays the property values in the

main GUI. However, the data itself is not easily extracted from these text files without a better understanding of the

format nor is it easily exported to other programs from within Thermal Desktop. That said, the API does offer

functions for retrieving the data programmatically for further manipulation. Basic functions had been written

previously to extract this data, but while the output format was functional, it was not particularly user friendly. A

new function was developed to improve the data format for presentations or inclusion in documentation.

After extracting the properties through the API, a spreadsheet is generated to display the material properties line

by line. Pertinent information regarding material name, isotropy, effective emissivity, density, specific heat, thermal

conductivity in XYZ directions, and comments are listed in individual columns. If the specific heat or any thermal

conductivity are temperature dependent, a new sheet is created with the material name and includes the tabulated

values and corresponding plots to visualize the dependence. Hyperlinks are generated to provide greater ease in

shifting between the material list and temperature dependent data. Regarding thermo-optical properties, a similar

documentation process is done with Beginning-of-Life and End-of-Life as defining categories. Figure 9 shows the

thermo-physical property table, while Figure 10 shows an example of a fully populated temperature dependent

material sheet.

Figure 9. Thermo-physical Property Sheet: The excel sheet displays the thermophysical list for further evaluation

or comparison between materials. Hyperlinks are highlighted to indicate temperature dependent data is available.

Figure 10. Temperature Dependent Material Sheet: The excel sheet displays the temperature dependent

properties and associated tabulated values. A back button allows quick return to the table of all properties.

International Conference on Environmental Systems

9

A material comparison sheet is also provided to compare properties. 10 drop down menus are included, each

containing all available materials. Selecting a particular material populates the specific heat and thermal

conductivity data table and updates the data displayed in the plots. If the property value is constant, the data is

shown as a constant value ranging from a default of 0 to 400. Figure 11 depicts the worksheet after specifying 10

different materials.

VIII. Framework and Interface

The various capabilities described in this paper were added to the framework1 developed at the Goddard Space

Flight Center. Table 1 lists the new functions added, and a complete list of functions in the framework may be found

in the appendix. The goal was to minimize, as much as possible, the need for a graphical interface to access the

capabilities of the framework, allowing users to develop their own interface to the framework capabilities. Entries in

italics utilize the OpenTD API, while the others are utility functions that do not require a connection to the API.

Framework Function Purpose

GenerateDampedPropHeatersInSSForPIDs

Process SINDA .inp file and add logic to .pid file to apply Predictor/Corrector

approach for all PID controllers

GenerateHtrDisSummaryCompare

Generate Compare_Summary sheet highlighting the differences between two

HtrDis postprocessing files

WritePropsToXL

Extract Material and Optical property data and generate Tables in Excel

workbook along with temperature dependent material property plots

GetTDGlobalVisibilityStates

Return data structure with deterministic global visibility state for each

Thermal Desktop object type (e.g. TD/RC nodes, Surfaces, HeatLoads, etc)

TurnNodeIDsOnForSelectedNodes Evaluate user provided node list and turn node number visibility on in GUI

GetTDObjectCounts Retrieve counts for each TD object type for each submodel

GetTDReferencedProperties Retrieve list of Material and Optical properties used by each submodel

GetTDObjectCountsAndReferencedProperties

Retrieve counts for each TD object type and lists of Material and Optical

properties for each submodel

GetAllReferencedRCOFiles Make list of all Optical files that were referenced throughout all CaseSets

GetAllReferencedTDPFiles Make list of all Material files that were referenced throughout all CaseSets

Table 1 – List of new Functions added to GSFC Developed Framework

The GUI developed at GSFC was updated to provide a means of access to these functions without the need for a

user to write their own code to access the functionality. This GUI is currently split across two separate tabs; one is

useful for manipulating and processing files and executing CaseSets. The other is geared toward utilities for model

integration/comparison. This GUI is depicted in Figure 12.

Figure 11. Material Comparison Sheet: The excel sheet display graphs of specific heat and thermal conductivity in

the x-direction for up to 10 materials. Each material has its respective values beneath the graphs.

International Conference on Environmental Systems

10

IX. Conclusions and Path Forward

The continued addition of capabilities to the OpenTD API has allowed users greater access to the internal data in

Thermal Desktop models. The Goddard Space Flight Center continues to explore the exposed data, seeking new

methods to optimize our thermal analysis process and expand our capabilities. The ability to inject these features

into the model execution process has helped streamline the process and minimizes the amount of user intervention

required to take advantage of the developed features.

The most recent efforts have focused primarily on improving the model integration and verification part of the

process. These added abilities allow a quick check that the same number of objects are present in both the source

and integrated models for each submodel and to import symbols from delivered case sets into their counterparts in

the integrated model. Further development of the “Compare” capability of the Heat Load, Heater, and PID

Controller summary sheets also allows for the verification of consistent predictions between delivered and integrated

models. To provide better documentation of the optical and material properties, the output from the previous code

was improved to more easily visualize the data extracted from the models. Lastly, the development of a new heater

routine for better predictive capabilities of PID controlled heaters is already beginning to pay dividends for the

Roman Space Telescope project, with a considerable reduction in the necessary run time to achieve quasi-steady

predictions for many of its mission modes. Furthermore, the ability to utilize steady state solution predictions,

bypassing the need for longer transient runs, is also being investigated and shows promise at this time. While this

code was developed specifically for SINDA, the algorithm is fairly easily convertible to other codes that utilize a

similar solution structure as SINDA with convergence and VARIABLES user logic blocks.

The process is currently underway to allow the release of these capabilities to the wider community, both the

executable and the source code, with the hope that other organizations will add to these capabilities and also share

their developments with the community. At this time, there are no plans to output to other formats, but once the

source code is released, any users wishing to expand the output options to other formats (e.g. web-based pages) are

free to utilize the framework provided to assist in that effort. As new capabilities are added to the OpenTD API,

GSFC will continue to explore the exposed data seeking even more improvements to its analysis processes and work

to share them with the thermal community.

Acknowledgments

The primary author would like to thank the Roman Space Telescope project for continuing to support the

exploration of the API to improve our processes and reduce the model run time.

References
1 Peabody, H., “Extending the Capabilities of Thermal Desktop with the OpenTD Application Programming Interface” ICES-

2020-297, 50th International Conference on Environmental Systems, 2020

2 Peabody, H., “Tracking Critical Thermal Metrics throughout the Life Cycle of a Large Observatory Thermal Model” ICES-

2020-298, 50th International Conference on Environmental Systems, 2020

Figure 12. Simplistic Graphical User Interface to access framework functions: A simplistic interface was

developed to more easily specify files and parameters to access the framework capabilities

International Conference on Environmental Systems

11

3 Peabody, H., Yee, E., “Run Time Improvement Efforts for the Roman Space Telescope Thermal Analysis” ICES-2021-253, 51st

International Conference on Environmental Systems, 2021

Appendix

The table below lists the current functions in the framework. Those with a preceding * are newly added. Those in

italics interface directly with Thermal Desktop through the OpenTD API, while the others interface with files that

may or may not have been generated using Thermal Desktop and does not require the API.

Framework Function Purpose

GenerateHeaterDissipationLogic

Process SINDA .inp file and add logic to .htr file to output Heater and

Dissipation output logic for every timestep

ProcessHeaterDissipationResults

Process SINDA .out file and retrieve output generated from

GenerateHeaterDissipationLogic and import into Excel template workbook

*GenerateDampedPropHeatersInSSForPIDs

Process SINDA .inp file and add logic to .pid file to apply Predictor/Corrector

approach for all PID controllers

*GenerateHtrDisSummaryCompare

Generate Compare_Summary sheet highlighting the differences between two

HtrDis postprocessing files

Write2DArrayToCSVFile

Convert 2D array to comma-separated value output file (can include Header

row and Output Mask)

ImportFileIntoExcel Import specified text file into specified Excel location, parsing on delimiter

ExtractTaggedLinesAndImportIntoExcel

Extract lines beginning with TagID from OutFile and import into specified

Excel location, parsing on specified delimiter

*GetTDGlobalVisibilityStates

Return data structure with deterministic global visibility state for each

Thermal Desktop object type (e.g. TD/RC nodes, Surfaces, HeatLoads, etc)

*TurnNodeIDsOnForSelectedNodes Evaluate user provided node list and turn node number visibility on in GUI

*GetTDObjectCounts Retrieve counts for each TD object type for each submodel

*GetTDReferencedProperties Retrieve list of Material and Optical properties used by each submodel

*GetTDObjectCountsAndReferencedProperties

Retrieve counts for each TD object type and lists of Material and Optical

properties for each submodel

*GetAllReferencedRCOFiles Make list of all Optical files that were referenced throughout all CaseSets

*GetAllReferencedTDPFiles Make list of all Material files that were referenced throughout all CaseSets

RemoveRadk1FromRadk2 Outputs file with all the Radks that appear only in Radk File 2

ReplaceRadk2MinusRadk1WithBackloads

Outputs file with inputs and logic to represent all the Radks in Radk2 but not

in Radk1 as Backloads along with radiation to sink

ReplaceRadk2MinusRadk1WithHeatFlowsIJ

Outputs file with inputs and logic to represent all the Radks in Radk2 but not

in Radk1 as a Heat Flow

EvaluateSymbolsInDWGFile

Generates temporary case set, outputs CC file and processes this for evaluated

symbol values

EvaluateSymbolsForSpecifiedCaseSet

Generates temporary case set spawned from user specified case, outputs CC

file and processes this for evaluated symbol values

ExtractSymbolEvaluatedValuesFromCCFile Process CC file header and retrieves symbol names and evaluated values

GetTDOptProps

Read TD object and extract optical properties and store in

GMM_OpticalProperties collection

GetTDThermoProps

Read TD object and extract thermophysical properties and store in

GMM_ThermophiysicalProperties collection

*WritePropsToXL

Extract Material and Optical property data and generate Tables in Excel

workbook along with temperature dependent material property plots

GetTDNotes

Read TD object and extract Notes data and Splice together all Tabs into single

output text file

GetTDRunDirectory

Return path to either DWG file if No CaseSet specified with UserDirectory, or

to UserDirectory

RunSpecifiedCaseSet

Execute case set in its own directory with options to add heater dissipation

and convergence trace logic

