51st International Conference on Environmental Systems ICES-2022-396
10-14 July 2022, St. Paul, Minnesota

Development of Improved Thermal Analysis Capabilities at
the NASA Goddard Space Flight Center

Hume L. Peabody* and Eric Yee?
NASA-GSFC, Greenbelt, MD 20771

Goddard Space Flight Center (GSFC) has been developing a framework of additional
analysis capabilities to aid in the verification, development, and execution of thermal models
using the OpenTD Application Programming Interface (API). This paper provides a brief
overview of the data structures, properties, methods, and relationships between the objects
accessible through the current APl and describes some of the algorithms necessary to
implement the desired functions at GSFC. Some example code snippets are also provided to
aid potential users in the development of their own utilities. Following the overview are
descriptions and algorithm methodologies of the new capabilities added to the GSFC
framework, including: a new Pl heater/controller approach for improved steady state
predictions, selective copying of symbol over-rides from one source CaseSet to destination
CaseSet(s), comparison of submodel object counts between a source and destination model to
verify model integration, comparison of thermo-optical and thermo-physical properties
between models, and improved display of extracted thermo-optical and thermo-physical
properties for documentation.

Nomenclature

API = Application Programming Interface NASA = National Aeronautics and Space Administration
GMM = Geometric Math Model SINDA = Systems Integrated Numerical Difference Analyzer
GSFC = Goddard Space Flight Center PID = Proportional-Integral-Derivative

GUI = Graphical User Interface TMM = Thermal Math Model

MLI = Multi Layer Insulation

I. Introduction

hermal Desktop® is an analysis tool commonly used by NASA-GSFC for the thermal modeling of spacecraft

and instruments. It utilizes the AutoCAD program as the front-end Graphical User Interface (GUI) to allow
analysts to construct geometric math models (GMM, which are used to compute radiative exchange factors and
radiative heatloads from celestial sources) as well as generating a network thermal math model (TMM, which is
solved to predict temperatures). Thermal Desktop has recently added an Application Programming Interface (API)
beginning with version 6.0 and has extended the capabilities of the API with subsequent releases. Since the inclusion
of the API, GSFC has utilized the capabilities offered to develop its own framework of thermal analysis utilities'? to
interface with model data and to automate repetitive tasks.

With the latest OpenTDv62 API, users now have full access to model data for all surface types, including finite
elements, which were not available in previous versions. Leveraging these new additions, GSFC has developed
additional utilities and capabilities to add to its existing framework. These new features include: a Proportional-
Integral (P1) controller algorithm for steady state SINDA solutions and utilities to aid in the integration and checkout
of integrated models. Capabilities of this new code consist of: the ability to compare the submodel level object
counts/types across two models, copying selected symbols from a source CaseSet to destination CaseSets, improved
comparison of predictions between model outputs, and improved reporting of thermo-optical and thermophysical
properties for model documentation. This paper outlines some of the basic usage of the API and how the data can be
accessed and describes the GSFC developed utilities and methodologies used to develop them in further detail. It
concludes with an updated compilation of the capabilities of the framework and the current GSFC GUI to access the
utilities.

! Staff Thermal Engineer, Mail Stop 545, Goddard Space Flight Center, Greenbelt MD 20771.
2 Thermal Engineer, Mail Stop 545, Goddard Space Flight Center, Greenbelt MD 20771.

1. Basic APl Usage Overview

In order to describe the methodologies employed to develop the utilities listed in the introduction, a brief
overview of the methods and data structures utilized by the API is provided. While code snippets could be provided,
they are deemed beyond the scope of this paper. The intent of this section is to provide just enough information for
an interested user to get started. The API itself is accessed by including a reference to the OpenTDv62.d1l in a user’s
.NET compatible project. To establish a connection with Thermal Desktop, a variable of ThermalDesktop type is
created (e.g. Dim TD as New OpenTDv62.ThermalDesktop). Once created, the drawing file to be accessed is
specified by setting the TD.ConnectConfig.DwgPathname property. Following this with a call to the
TD.Connect() method establishes a link with either an existing AutoCAD application that is already open with the
specified drawing file or creates a new instance in which the specified drawing file is subsequently opened. At this
point, all of the exposed data is now available for further investigation or manipulation. In general, two types of
tasks could be developed: those that alter the execution flow and those that query and/or manipulate data.

Most object types can be retrieved as a List(Of ObjectType) by calling the appropriate method [e.g.
TD.GetRectangles()]. Alternately, a single object may also be retrieved knowing its handle, which is the unique
identifier for each object in the AutoCAD database and is generally stored as a 6-character hexadecimal values [e.g.
TD.GetNode(myHandle)]. Each object type includes .AttachedzzzHandles lists, where ZZZ varies by object
type (e.g. Conics, Node, HeatLoad, Object, etc) which provides the linking hierarchy between objects (e.g. a
Contactor that references a Surface, a HeatLoad assigned to a Node). For example, a node object type includes the
.AttachedConicsHandles method, which retrieves a list of all the handles for surfaces related to that node, and
the .AttachedObjectHandles method, which retrieves a list of handles for all the objects (e.g. HeatLoads, Finite
Elements, Conductors, etc.) related to it. Using the .GetEntityTypes method allows each of these handles to be
dereferenced to their object type and the specific instance of each object retrieved for further evaluation.
Understanding the relationships between objects through their related handles was crucial to the development of the
object count utility as well as any future development across dissimilar object types.

While the function names listed above are specific to the OpenTDv62.dll, the software vendor has made efforts
to not “break” the functions with each subsequent release of OpenTD. In fact, future releases would be in their own
file, preventing conflicts if the original library continues to be used with the developed code. Only when a new
library is introduced, perhaps to take advantage of newer features, does the risk of conflicts arise. In fact, during the
development of these tools, upgrading from v6.1 to v6.2 did break some functions that changed between the two
libraries, but the updates to fix the code were very minor. That said, it is in the software vendor’s own interest to
minimize any disruptions to the existing functions in the library to keep end users satisfied and wanting to continue
to use the capability while also reducing the amount of support they would need to provide.

Some of the functions developed by GSFC do not directly interact with the objects in the model, but rather alter
the model execution portion of the analysis process to inject code for specific purposes. In this case, the API is used
modify a case set, execute it as needed, and process the files generated in response to add custom code to perform
additional tasks during model execution. This was first used by GSFC to automate the inclusion of Heater, Heat
Load, and PID Controller logic between the generation of the CondCap file and the execution of the input file?. This
approach was also improved to implement the Radk Filtering options developed previously®. Most recently, this
capability has been expanded to add custom logic for the emulation of PID controllers in steady state solutions to
achieve the setpoint, which is described in the following section.

I1l. Steady State PID Emulation

PID controlled heaters are difficult to model in steady state solutions as there is no time value on which the
integrator term can operate to achieve the setpoint. Therefore, the proportional term is the only term that can provide
meaningful contributions to the control variable. Some PID algorithms might try to utilize the iteration count as a
pseudo-time substitute, but this becomes difficult with simultaneous solutions which advance the entire solution
each iteration and no mass to dampen the changes between iterations. For this new approach, a predictor-corrector
method was employed to get close to the stable solution before an averaging window is used to generate the final
predictor value. The corrector term is then employed based on the setpoint/sense point relationship to gradually
increase or decrease the control variable. Each time the setpoint is crossed, the adjustment value is decreased until it
reaches a minimal threshold, after which it is set to zero and the duty cycle remains fixed for the remainder of the
solution.

The SINDA input deck is first processed to identify all calls to PID controllers and the setpoint, sense point, and
control variable registers are identified. Further processing is performed in two additional passes through the input
file to identify registers that may reference the control variable but are themselves assigned to the nodal heat

2
International Conference on Environmental Systems

Algorithm Flow Chart:
LOOPCT = 0: ASSUME control and prevent convergence
0 to APPROACH: Damped Proportional Htr
APPROACH to AVERAGE: Damp. Prop. Htr and Sum Q
AVERAGE to APPLY: Q = Sum Q/Count
APPLY onward: adjust DC every N iterationsby ADC and
reduce ADC at each setpoint crossing until MinDC
ACQUIESCE: when enough loops OR ADCs reduced to 0
ASSIGN (Not Shown): when SS convergence is reached,
initialize PID Ig,,., based on computed CV for Transient

— R

Iy Yes

Yes

ADJUST o

Figure 1. Steady State PID Heater Emulation Flowchart: The algorithm behavior varies with iteration. It first
ASSUMES control to prevent premature convergence by SINDA. Next, it APPROACHes the required heater power
using a damped, proportional approach. After some iterations, it begins the process of AVERAGE-ing these values,
which are the APPLY-ed as a constant averaged value over the next iterations. After applying the average, it
ADJUSTSs the heater power to more closely match the setpoint, reducing the adjustment amount every time the

application logic (e.g. PID_1 HeaterPwr = PID_1_DutyCycle * PID_1_AuvailablePower). A final pass is made
through the file to determine all the nodes to which heat is applied for each PID controller. With the knowledge of
the control variable, sensing point, setpoint, and related nodes for each controller, the logic is then be written to the
file to be included in the solution.

The complete algorithm (shown in Figure 1) is executed in SINDA and is broken into multiple sequential phases:
ASSUME CONTROL, APPROACH, AVERAGE, APPLY, ADJUST, ACQUIESCE, and ASSIGN. The ASSUME
CONTROL phase begins by storing all the current convergence criteria and recasting the convergence criteria to
zero to prevent solution convergence prior to setpoint achievement. This portion also initializes arrays which store
the relative node locations in SINDA and initializes the average value of the control variable to zero. The
APPROACH phase utilizes the same logic as a steady state damped, proportional heater generated by Thermal
Desktop, with the On/Off range defined as (setpoint) to (setpoint — 4). This phase is used to determine a duty cycle
that is generally close to achieving the desired setpoint through the first X iterations but may result in oscillations
about the setpoint. The next phase is the AVERAGE phase which computes the sum of the heat applied for each
individual node in the model over the next Y iterations as well as the sum of each control variable. Dividing these
sums by Y, results in the average power or average control variable value as the solution moves into the next phase.
The APPLY phase assigns the average nodal heat load to each node and the average control variable for the next Z
iterations in order to provide stable and constant values to the solution for better likelihood of convergence without
the perturbations of PID controllers or other heaters or varying heat in a steady state solution.

The next ADJUST phase is the most crucial, as this is the phase where adjustments are made to the heat applied
based on the relationship between the setpoint and the sense point. If the sense point is above the setpoint, then the
duty cycle is reduced by a fixed delta beginning with a 4% change (e.g. a duty cycle of 0.33 changes to 0.29 if the
sense point is warmer than the setpoint). The opposite is true if the sense point is below the setpoint and the duty
cycle is increased. Constraints are applied to ensure than the duty cycle never exceeds 100% or falls below 0%.
Earlier versions of this algorithm only adjusted the PID control variable, but other non-PID heaters in the model
generally perturbed the solution enough to prevent convergence. Furthermore, previous analysis efforts constrained
the nodal heat values to constant (averaged values) for the last part of the run to improve the likelihood of
convergence, but without the corrector term, the controllers were unlikely to achieve their setpoints. The final
algorithm combines the benefits of both approaches. The relationship between each PID controller and the nodes to

3
International Conference on Environmental Systems

which heat is applied must be established in order for this approach to function properly. The heat values at a nodal
level are adjusted every N iterations and the data is tracked to see when the sensing point crosses the setpoint. At
this crossing event, the amount of the adjustment is reduced by half (e.g. 4% to 2%, 2% to 1%, etc.) and the process
continues. The effect is a damping of the overshoot or undershoot about the setpoint until 0.25% is reached, at which

point the adjustment is set to

zero and the prediction deemed adequate. Throughout the ADJUST phase, the

percentage of circuits that have had their adjustment reduced to zero is tracked, and once 80% of the controllers are
no longer adjusting, the last ACQUIESCE phase is executed. During this phase, the convergence criteria is set back

to the original values, and the

solution continues towards convergence with the few remaining controllers still

adjusting if needed. Upon convergence, the final ASSIGN phase is executed which calls the PIDINIT function in

SINDA with the current
setpoint, sense point, and
control variable, which
initializes the accumulated
error term for the start of a
subsequent transient solution.

During the development of
this technique, other options
were explored and found to not
perform as well as the final
algorithm. This includes only
applying this methodology to
the control variable, which did
not allow for the nodal heat
averaging over all nodes and
often did not converge.
Additionally, the adjustment
was originally envisioned as a
multiplier, but this had a near
negligible effect for very low
duty cycles (e.g. a 1.04/0.96
multiplier on a 4% duty cycle
would take many adjustments
before any meaningful
response could be seen.

The overall goal was a
reduction in the run time for
the Roman Space Telescope
observatory model to achieve
quasi-steady stability. While
the number of iterations needed
to reach steady state increased,
the ability to start the transient
from a closer condition resulted
in less solution time needed to
reach quasi-stability and an
overall reduction in run time.
Figure 2 shows the PID
emulation for one of the
controllers where each phase
can be clearly seen. Figure 3
shows a comparison of the
transient model performance
for a select controller and
resulted in a 33% reduction in
overall run time.

PID Controller Performance (Solid: Sensor, Dashed: Control)

—OBA_htr_PQ_B4

235 0.5

234 K] O O U S Control 045
233 Variable 04
X .
; 232 ,,,,,,,,,,,,,,,,,, S, e,t,?,olr]t, ,, 035 —
5 g
"é 231 0.3 S
2 230 Setising 025 £
g Point §
= 229 0.2
o a
c a
‘B 228 0.15
=
[}
wn 227 0.1
Q
o 226

N
N
%]

0 20 40 60 8 100 120 140 160 180 200 220 240 260 280 300
Iteration

Figure 2. Performance of PID Heater Emulation during Steady State
Solution: APPROACH: 0-40, AVERAGE: 41-70, APPLY: 71-90, ADJUST: 91-
210. As the entire solution progresses, full model convergence is achieved around
iteration 300 and the sensing point is very close to the setpoint of 232 K

PID Controller Performance (Solid: Sensor, Dashed: Control)
—DampProp —DampProp+init —PID_SS

267 1
0.9

Sens
2665 —=—TETEEE=sEs SEns T 0.8

266
Ctrl

2655 TMT A TS o osssm=os—- oo —so s SSwemmsooons T 04

Approx. Quasi- Steady Ctrl

o
w
PID Control (%)

265

PID Sensing Temperature (K)

264.5 0
0 3600 7200 10800 14400 18000 21600 25200 28800 32400 36000 39600 43200
Time (s)
Figure 3. Performance of PID Heater with and without Steady State
Emulation: The red curve represents the previous method using a damped
proportional approach for steady state. The blue initialized the PID accumulated
error using the damped proportional values estimated in steady state. Lastly, the
green used the Predictor/Corrector approach and initialized the accumulated
error using the predicted steady state values and was run for half the transient
time reaching quasi-stability considerably sooner. By the end of each run, the
results are similar, although the new approach reaches that point much sooner.

4
International Conference on Environmental Systems

IV. Object Counts

A fairly common model check when integrating a source model into a destination model in Thermal Desktop is
to compare the object counts between the two models, usually done at a submodel level. Any discrepancies may
indicate differences that should be resolved before concluding the integration was successful. However, for model
deliveries with many submodels, the practicality of comparing possibly more than 50 submodels becomes tedious at
best. Therefore, the API was utilized to programmatically retrieve this information for each submodel from two
models and output the results into a spreadsheet for much easier direct comparison.

The routine begins with evaluating all Domain Tag Sets and storing the information for later use. To optimize
the data retrieval, lists of Submodels, Nodes, Conductors, Contactors, HeatLoads, and Heaters for the entire model
are retrieved and stored in internal variables. Each submodel is processed and the subset of nodes in that submodel
are retrieved using the .Where method of the List(of Node). The type of the node (RC/TD, Diffusion,
Avrithmetic, etc) is readily identifiable through direct properties of a node. Surfaces and elements require iterating
that the node’s .AttachedConicsHandles and .AttachedObjectHandles lists.

As these lists are processed for their respective entity types, handles for Surfaces, Solids, Planar Finite Elements,
and Solid Finite Elements are identified and stored separately. Upon processing all the nodes in a submodel, these
four lists of handles are sorted and compressed to remove duplicate handles. The lists of Surfaces, Solids, and Finite
Elements are then processed to identify any assigned MLI nodes, which are not included as unique objects in the
List(of Node) previously retrieved. As each object type is identified, the object itself is retrieved, and then the
properties defining the application of insulation are queried to identify MLI node numbers and store them in a
master insulation node list. This master list is then used to report the number of INS nodes for each submodel.

Lastly, all Conductors, Contactors, HeatLoads, and Heaters are processed. For Conductors, the .From
connection list is a single node and this handle can be compared to all node handles in the submodel subset list to
determine if it matches, and therefore is related to the submodel being processed. The . To list for a Conductor may
contain either nodes or surfaces. Determination of related nodes is the same as for the .To list approach, but for
surface types, the comparison is made to the list of surfaces and planar finite elements determined from
.AttachedConicsHandles and .AttachedObjectHandles methods earlier. In the event that a Domain Tag Set is
specified, it is replaced with the handles to the objects contained in the Domain Tag Set definition processed earlier
in the sequence. If a reference to the currently processed submodel is identified, then the current Conductor is
identified as related to the current submodel and the Conductor count is incremented. Each Conductor is processed
similarly, and the resulting count of all related entities is stored. A similar process is followed for HeatLoads,
Heaters (which also includes the .ApplyConnections and .SensorConnections) and Contactors (which includes
the .From and . To connections).Once all the data is processed, the results are compiled into a 2D matrix comprised
of submodels and object counts for: Total Nodes, Thermal Desktop/RadCAD nodes, Diffusion Nodes, Arithmetic
Nodes, Boundary Nodes, Clone Nodes, Insulation Nodes, Planar Finite Elements, Surfaces, Solids, Solid Finite
Elements, Conductors, HeatLoads, Heaters, Contactors, and Measures. This matrix is then readily output as a
Comma-Separated Values file for subsequent import into a spreadsheet, as shown below in Figure 4.

A B Z D E F G H | J K L M N o P Q
1 |C:\Users\hpeabody\Documents\Spacecraft\WFIRST\PreCDR\Delivered Models\Telescope\OTA_CDR_11-16-20\RST_OTA_CDR_IOA_v26_TDv61_2019.dwg

& & o & & ¥ & &
R R PN S I AP I R Y SR N
2 |submadel 48 A0 F F o W o F P & € ¥ P <
3 |*INACTIVE 2 2] 0] (1] 0] 1 0 0 0 0 0 1 0
4 |BUS_BATT 107 107] 0] (1] 95 88 0 0 0 0 1 1 3 0
5 |BUS_CDH 84 84] 0] (1] 0] 12 0 0 0 2 0 2 0
6 |BUS_DIPLEX 116 116] 0] (1] 92] 16 7 0 0 8 0 2 0
7 IBUS_DPE 68 68] 0] (1] 0] 12 0 0 0 2 0 2 0
8 |BUS_EPC 42 34 8 0] (1] 2] 19 0 0 10 2 0 2 0
9 |BUS_FITTINGS 150 190] 0] (1] 0 32 10 16 0 0 0 0 (1] 0
10 BUS_GCE 64 64] 0] (1] 17 16 2 0 0 0 1 0 2 0
11 |BUS_HGAS 2462 2462] 0] (1] 388 152 205 129 0 20 10 8 35 0
12 |BUS_HGAS_STRUCT 463 463] 0] (1] 479 190 65 108 0 5 1 1 52 0
13 |BUS_HTR 39 358] 0] (1] 0] 39 0 0 0 0 29 11 0
14 BUS_K_BAND_MOD 149 149] 0] (1] 34] 16 0 0 0 2 0 2 0
15 |BUS_LGA 28 28] 0] (1] 0] a4 0 0 12 0 0 4 0
16 |[BUS_LGA_MNT 43 43] 0] (1] 27 26 0 0 0 0 0 0 4 0
17 |BUS_LISS_MECH 158 158] 0] (1] 6] 14 202 0 2 0 2 70 0
18 |BUS_MOD1 92 92] 0] (1] 90 72 2 0 0 10 0 0 1 0
19 |[BUS_MOD2 587 587] 0] (1] 377 352 4 0 0 12 0 6 11 0
20 |BUS MOD3 1762 1762] 0 0 1] 320 1022 3 0 0 10 0 4 [0
RST_OTA_CDR_IOA v26 TDv61_2019_ ®

Figure 4. Sample of Object Count OutpUt: The number of each object type associated with a given submodels is
listed for further evaluation or comparison between two or more models

5
International Conference on Environmental Systems

V. Copy Symbols between CaseSets
One of the more powerful features of

Thermal Utilities Plus

Thermal Desktop is the ubiquitous use of [~ " —
SymbOIS to C.OntrOI and Conflgure a mOdeI Source Drawing File ‘C'-Users-.hpeabndy-Dncuments-Spacecraﬂ'.WFlRST-PDﬂCDR'.SC703A7CmisChEck-ROMANVSCdFiFINALivEWdwg |
HOWEVEr, this can also lead to instances Destination Drawing e |C:AUsers\hpeabody Documents \Spacesrat\WFIRST\PostCOR\ROMAN-54F-126-T26_C3_-W33AG1D-DTH-DA v62_2018.dwg |
where the incorrect setting of a symbol can Source Submodels Obiocts Opticas Metetds Symock | CaseSets
lead to model errors. Furthermore, BOUID s S j— ‘ o Deron CeeeSe
. . . BOUND_FMS _X0_Y0_Surv ISR ROMAN PreCDR Y-36 X15 Cold JPY
mcorporqtmg numerous symb_ol overrides BONDPU e Sombols Overfides Egﬁgg E:Egggi&gﬁgﬁd
from a given CaseSet in a delivered model EoUND atrsT EMODE-Dve | ROMAN_PreCDR_Y38 x0_Cod
. . . . BOUND_TELE HOT =1 vs, Varies ROMAN_PreCDR_Y36_%-15_Cold
into a CaseSet in a destination model can be s paTr AISZAISE D FOMANPreCOR 10, %16 Celd
very time consuming and error prone. BUS CoMH DX indnade_Sou - 0vs.0 ROMAN FreCBA™YD D ot 55 b7

- - . BUS_COMM_EPC Am;y_slow =0vs.0 ROMAN_PreCDR_YD_X0_Cold_S5_DP_lnit
Needing to include these symbols in e e L N

- . . o N "ot X-15_ul
multlple des.tlnatlon CaseSets only EE% ég%;ﬁ TRAnsp PIDSPn L =1vs.0 Egmmimgggz:gﬂﬁl
compounds this challenge, although the Bus-cone F”‘sH”Ek

1 - - BUS_FITTINGS
ablllty to -edlt multlple case sets does s FOWAL P01 Y6 L1
alleviate this a bit. But when needing to Bsee FOUAN PCOR 136X 8 i
H . BUS_HGAS_STRUCT |_PreCDR_T0_%-15_|
integrate multiple subsystem models, each | sh: s o
with their own sets of symbols and values, DU GRS VUFIRST DR 135 T3 10 26 15 S
for multiple configuration cases (e.g. hot BUS HGA PrARY o Coosas | | VIERST-PeCOR 00 DI 0% i we
. . . ! BUS_HGA_RJ :’VFIRST PreCDR_CGI_DITL_OS8_cold
cold, survival, stowed, etc), this can quickly BUEHansamg FeeC Compare Symcsbetueen Seected CoseSet | et P A (T Do
b t. . t t bl_ h RIS HTR J Add Prefix Muttiplierto Selected Symbols < >
e a time-consuming process to establis d >
the correct full set of symbols in the |,
-

destination model. Figure 5. Graphical User Interface for Symbol Copy between

Using the API, an interface was CaseSets: The GUI displays the symbol overrides values of the

developed which allows for the selection of = selected source as well as the corresponding values from the selected
a single CaseSet from the source model and pestination CaseSets

then displays all the symbol overrides,

along with their override values. A listing of all the & - = = b :
. . . . 1 |From: ROMAN-54F-12K-T26 -C3_-W33A-G1D-DTM-DA_v62_2018.dwg
CaseSets from a destination model is also provided, and KN 5
. - o
as a user selects destination CaseSets, the values for 5)9 & &
each symbol override in those CaseSets are displayed i 3 %&“” o
alongside the source case set symbols. If the destination Py -y
symbol’s values are not identical across all selected @3 @@3 @@3
CaseSets, then the value displayed is “Varies”. Use of 2 [symbol © © ®
this interface has reduced the time necessary to 3 AMS htr Q 2 20.0267 | 2213478 | 2643089
.- - . - . 4 |AMS_htr_Q_3 20.0267 | 22.13478 | 28.43089
construct the CaseSet definition in the destination file 5 [AMS htr 0.4 2007519 | 33.241 |az.69621
considerably by displaying the source values and § |AMs htr O 6 3007519 | 33.241 |42.69621
- - - 7 |Array_PowerDraw 1 1 0
allowing for a simple button click to transfer the 8 [Bias. ML . o 3
symbol definitions to the destination CaseSets. 3 [BUS_SCESTAR 003 | 003 | oo
H HH H 10 |BUS_SCESTAR_SA 0.03 0.03 0.01
Another companion capability to copying symbols 1 [auUs-SCESTAR TOP DECK oo Too Too
between CaseSets was also developed that allows for 12 |CGI_Bias_General 2 2 0
comparison of symbols between multiple case sets. 130G Bias MU 2 2 0
. . 14 |CGI_Bias_Power 0 0 2
However, this feature goes deeper than a direct symbol 15 [CG1_Bias_voltage 0 0 2
override comparison, evaluating symbols based on 16CGI_DQ_DM1_FIX_HTR 0.001565 | 0.001565 | 0.00213
H - 17 |CGI_DQ_DM1_SHLD_HTR 0.003 0.003 | 0.004083
based on the direct override, as well as symbols that are 18]col DO DM FLX AR To0156s To.001ses | 0.0023
dependent on the overridden symbol®. Figure 5 shows 12[CG1 DQ_DV2 SHLD HTR 0.002 | 0.002 |0.004083
the graphical interface for copying symbols from one | CCL DO, EXCAM_HTR 000432 | 000432 10005831
A . 21 |CGI_DQ_LOCAM_HTR 0.00432 | 0.00432 | 0.005881
CaseSet to another, while Figure 6 shows the results of 22 [cGl DO _OBSA_10 HTR 0.011613 | 0.011613 | 0.015806
a comparison of symbols between multiple case sets. 23|CGLDQ_OBSA_1 HTR 0.016552 | 0.016552 | 0.022529
24 |CGI_DQ_OBSA_2 HTR 0.013091 | 0.013091 | 0.017818
25 |CGl_DO_OBSA_3 HTR 0.013091 | 0.013091 | 0.017818
26 |CGI_DQ_OBSA_4_HTR 0.021176 | 0.021176 | 0.028824
27 |CGI_DQ_OBSA_5_HTR 0.013091 | 0.013091 | 0.017818

Figure 6. Symbol Comparison Output: The comparison
of the three selected Destination CaseSets highlights the
differences in symbol values, including the dependencies
of the direct overrides.

6
International Conference on Environmental Systems

V1. Model Prediction Comparison

Beyond the comparison of object counts and symbols between models, a methodology was also sought to easily
compare predictions between models. Previous efforts® included the capability to output Heater, Heat Load, and PID
controller information at each timestep. This approach reads through the CondCap file generated by
ThermalDesktop prior to the execution of SINDA. During this read, it identifies SINDA code associated with the
application of HeatLoads, Heaters, and PID controllers and extracts the defining parameters (e.g. ,setpoint, heat
dissipations, control variable, etc). These values and variables associated with them are then processed to generate
specialized logic to be included during the model execution in SINDA, which in turn produces relevant data in the
output file related to the HeatLoads, Heaters and PID controllers at every timestep during the solution. After model
execution, the output file is then processed to extract the data and imports it into a template Microsoft Excel®
workbook for further processing, shown in Figure 7.

anaSaCAORE W | a5

- fﬁzyﬁzfz’f“«fﬂ"fy SIS e

o Comenen W fff |
N g G S G SR S

om SIS TS

Figure 7. Heater, HeatLoad, PID Controller Summary Sheet: The Summary sheet shows the critical temperature
and power data for all HeatLoads, Heaters, and PID Controllers found in a model (Headers enlarged)

e

A new comparison utility was recently added to identify significant differences between two model outputs
based on the data on the Summary tab, shown in Figure 8. Two files are supplied to the routine and it evaluates the
data, identifying temperature deviations of more than 2 K and any differences in power (Dissipation, Heater, or
Control Variable). Power differences of more than 5% are identified by bold, red text; power differences between 2-
5% are identified by bold orange text. All differences of consequence are captured as a comment to the worksheet
cell, which includes: the base value, compare value, difference, and percent difference (if a power value). Figure 7
shows the Summary_Compare sheet with the comments identifying significant differences. At this time, the
comparison is keyed off the name of the HeatLoad, Heater, or PID Controller. Therefore, comparisons are limited
based on those names and to the same software, but the general intent is to be able to verify that the performance of
a subsystem model is consistent when integrated to the next higher level of assembly, and the renaming of these
object types should not be expected. Furthermore, these is no effective way to graphically display these values (e.g.
contour plot on a 3D model) as many of the values represent a subset of all nodal values, but do represent critical
locations where heat is applied or temperatures are directly impacted by the application of heat. In this sense,
tabulation of the data and the differences is judged the best means to display this data.

1 Observatory T2a221 2618.2 27913
3 S¥5STEM 2014.0 20953 20968
79 =d areanegative heat flus to counter salarlo 0,153 0,153 0153 15188 15134 15135 CGl:
20 Siolar impingement on 52 radiatar 01605 0. 1605 B2 19753 2o 491 CGl:

8 |1 Op Heater- Thermal Shield, PID Contraller # u} 1.65992 .
22 OpHeater- Flex Cable Guard, PIOCantroller 0375 0.975 05 Z86.75 | -2-87) | CGLEPIO_Hu
2% 2 0OpHeater- Thermal Shield, PID Contrallerd 1.8751 18751 |71 28386 28334 CGERID_Her :

Figure 8. Heater, HeatLoad, PID Controller Summary_Compare Sheet: The Summary_Compare sheet
highlights differences between two files as comments for each cell (including the two values, difference, and percent
difference for power values) with a comment in Al listing the compare filename for reference

.14| 234 47 2ar.om |CGEPID_Hir

7
International Conference on Environmental Systems

VII. Property Documentation

Thermal Desktop stores optical and material property data in text files and displays the property values in the
main GUI. However, the data itself is not easily extracted from these text files without a better understanding of the
format nor is it easily exported to other programs from within Thermal Desktop. That said, the API does offer
functions for retrieving the data programmatically for further manipulation. Basic functions had been written
previously to extract this data, but while the output format was functional, it was not particularly user friendly. A
new function was developed to improve the data format for presentations or inclusion in documentation.

After extracting the properties through the API, a spreadsheet is generated to display the material properties line
by line. Pertinent information regarding material name, isotropy, effective emissivity, density, specific heat, thermal
conductivity in XYZ directions, and comments are listed in individual columns. If the specific heat or any thermal
conductivity are temperature dependent, a new sheet is created with the material name and includes the tabulated
values and corresponding plots to visualize the dependence. Hyperlinks are generated to provide greater ease in
shifting between the material list and temperature dependent data. Regarding thermo-optical properties, a similar
documentation process is done with Beginning-of-Life and End-of-Life as defining categories. Figure 9 shows the
thermo-physical property table, while Figure 10 shows an example of a fully populated temperature dependent
material sheet.

A 5 o o E F [H i . 3 L M N o [Q ® s T
| Name Isotropic - Density [kg/m~3) | cp [1/x/kg] |k [1/s/m/x) | ky [3/s/m/K] |z [3/s/myK] |[comment
2 Al 5052-H32 sotropic o 2684.951 562064 | 139.459 1PSS Cris: From Mil HDBK 5H
3 AlHC Isotropic a 4367 500 113 [Values abtained from Hume's calculation spreadsheet which is based on Thermal handbonk
4 BUS_5056_Core_3.1pct Anisotropic| o 49.65724 904 0.4368 0.6552 2.1518_|Based on equations from Thermal Control Handboak
5 BUS_AL_L100F Isotropic. o 270 900 205 From TIRS...k: Wadd Technical Report 60-56 Part 2 PAGE 3.232 rho and cp: (use values for al6061-16) Batelle's Handbook on|
6 BUS_AL 6061 T6 Isotropic) 2778 860 1515 [Tref @ OC; per IWST [NIST source {tables populated)
7 BUS_AL_SIC25 sotropic o 2800 866 165
] BUS_Al 7050-T7451 isotropic o 2830 860 157 Higher Stranght AL Alloy for LBS Pocketed Panels - Props from Matweb.com
] BUS_AI 075173 sotropic [w0 | & km | RT conductivity Is specific to the 7075-T73 temper. This value is per efunda.com and gabrian.com. Toulouklan (Thermophys|
10 BUS_Copper sotropic o 8960 285 285,827
il BuUS Core3.l Isotropic a 49.65724 900 2552451 5052 3.1pcf
2 BUS_FLEX_BOARD_CMR isotropic o s00 | 1000 2
1 BUS_GaK isotropic | 0.08 1 0 o
14 BUS_HGAS e*p03 Isotropic. 0.03 1 1 1
15 BUS_HGAS_CSA 1006 VEM_Moog Isotropic) 963 1100 0.0015 [Thermal Conductivity: ~ 0.0016 W/cm C;Specific Heat: ~ 1.1 1/Kg/C;Density: ~ 968 Kg/m"3
% 8US_HGA_AL 6061 T6 sotropic a 2810 833 1 Cata from MRO
17 BUS_HGA_Coax Cable sotropic a 1 1 1 [This Is 2 placeholder; 6SFC to sperify properties
i BUS_HGA_Comp_Inner_Ribs sotropic a 5%.794 s | 1305 |composite Average Value See AASC_RST_Thermal_inputs for Calculations
9 BUS_HGA_Comp._Outer_Ribs isotropic o 281427 512323 | 56155 |composite Average Value See AASC_RST_Thermal_inputs for Calculations
20 BUS_HGA_Comp_PriReflector Shell Isotropic a 158.553 5254 3.0333 |composite Average Value See AASC_RST_Thermal_Inputs for Caleulations
z BUS_HGA_Fitting Conductivit sotropic a 0%s9399 | ogsewss | k(1| |conduetance determined through breakaut madels; nete that specific heat and density are meaningless in this property. Uj
2 BUS_HGA_HC Core 2.0 PCF isotropic o 32037 1256 0.076 From Al Yah 3; HRH10 2.0 pef Dansity
3 BUS_HGA_HC Core 3.0 PCF isotropic o amossa | 1z bua | From &1 ¥ah 3; HRH10 3.0 pef Density
2 BUS_HGA_Kevlarag sotropic [1420 1420 1728 see Spreadsheat Keviar-49_thermal_props (https://tre.nist.gov/cryogenics/materials/Kaviaras/kevlarcomposite. htm)
) BUS_HGA_YSHS0A-RS3 Laminate isotropic a 1740 Col 0 Data From MAO and LRO; Cp versus T from 16042_PreliminaryData_Cp.xlsx
2 BUS_HTR Isotropic) 1420 | s 018 | ITref @ 25¢; Kap ton per IWST *** for heater mats ONLY
7 BUS_IC_G10CR p [1750 =] K1) k(1) KalT) |waRP direction; x and y p: ibers; 1 perpendicular ta fibers; REFERENCE: Manufacturer's Data Sheet Stevens Tubing]
] BUS_INVAR sotropic [6030 504 13
2 BUS_K13D sotropic o 163311 com) 225 |cusasi Isotropic therml conductivity;Cither properties are the same as M55
30 BUS_KAPTON sotropic a 1420 656.6 018 [Tref -50C; per JWST (tables populated)
31 BUS_KEVLAR sotropic [1430 1920 | 1574803 [Taken D/ fwwrw.matweb, aspx7MatGUID 79507726 720723c8E
2 BUS_M35) Isotropic) 163311 705.6 0 [Tref -30C: per JWST {tables populated)
3 BUS_MLI02 isotropic | 0.02 0.6000001 0 o l0.02 estar
3 BUs_MLIos sotropic [[[lo.0z estar
as BUS_MLIL sotropic 08 0 0 l0.02 estar
36 BUS_MUI_DAC sotropic 06) [l0.02 estar
Plotting | Thermophysical Properties | BUS_Al 7075773 BUS_HGA Fitting_Co GA_YSHS0A-RSS Laminate | BUSIC_GIOCR | BUSK! *

Figure 9. Thermo-physical Property Sheet The excel sheet dlsplays the thermophysical list for further evaluatlon
or comparison between materials. Hyperlinks are highlighted to indicate temperature dependent data is available.

A] c D E F G H J K L M N o P a R s T u v w X ¥
1 [Back
2
3 | Temp [K] | Cp [/K/kgl Temp [K] | Kx [J/s/m/K] Temp [K] |Ky [)/s/m/K] Temp [K]| Kz [J/s/m/K]
4 w» Kx 20.00 4717 220 0.04 220 0.04 20,00 0.16
5 7 o8t 30.00 8131 2.40 0.05 240 0.05 30.00 0.19
6 897 or 40.00 115.36 2.60 0.05 2,60 0.05 40.00 0.22
7 Bl o 50.00 | 149.06 280 0.05 280 0.05 50.00 0.24
) pd oe 60.00 | 18253 3.00 0.06 3.00 0.06 60.00 0.26
9| _s % 7000 | 21534 3.50 0.07 3.50 0.07 70.00 0.27
10| L 9 80.00 | 24941 400 0.08 400 0.08 80.00 0.28
1| Saw “ 90.00 | 283.03 5.00 0.09 5.00 0.09 90.00 0.30
12| &3 % 100.00 | 316.86 6.00 0.10 6.00 0.10 100.00 0.3L
13 peed = 11000 | 350.92 8.00 013 8.00 013 110.00 0.32
14 2%7 1 12000 | 38521 10.00 0.14 10.00 0.14 120.00 0.33
15) 014 13000 | 419.72 15.00 0.17 15.00 0.17 130.00 035
16 7 o 14000 | 45402 20.00 0.20 20.00 0.20 140.00 0.36
17 0 45 70 95 10 145 170 195 230 245 270 255 2 27 52 7 102 127 152 177 202 227 252 277 15000 | 489.29 30.00 0.24 30.00 0.24 150.00 0.37
18 Temp [K] Temp (K] 160.00 | 52427 40.00 0.28 40.00 0.28 160.00 0.3
19 17000 | 559.32 50.00 0.31 50.00 0.31 170.00 0.40
20 180.00 | 59440 60.00 0.34 60.00 0.34 180.00 0.42
20 190.00 | 629.45 80.00 0.40 80.00 0.40 190.00 0.43
22 Ky k2 20000 | 66443 10000 045 10000 045 200.00 0.44
23 21000 | 699.28 120.00 0.50 120,00 0.50 210.00 0.6
24 22000 | 73394 140.00 0.55 140.00 0.55 220.00 0.48
25 23000 | 768.37 160.00 0.59 160.00 0.59 230.00 0.49
26 24000 | 80252 18000 0.63 18000 0.63 240.00 0.51
27 25000 | 836.33 200.00 0.67 200.00 0.67 250.00 0.52
28 260.00 | 86976 240,00 0.75 24000 0.75 260.00 0.54
20 27000 | 30276 280.00 0.82 280.00 0.82 270.00 0.56
30 280.00 | 335.29 300.00 0.36 30000 0.36 230,00 0.57
31 9 29000 | 967.29 290.00 0.59
32 . 300.00 | 29874 300.00 0.61
33)
oo ;
35 2 27 52 77 102 127 152 177 202 227 252 277 20 45 70 95 120 145 170 195 220 245 270 285
36 Temp [K] Temp K]

« » .| crisTitanium6al-4v | IC.G10CR | IC_MS5) 954 Anisotropic | IC_MS5) Comp_Anisotropic | IC_TiAL4V | MS5)GMIDeck | M55iSA | TELEALUMGC .. (B <

Figure 10. Temperature Dependent Material Sheet: The excel sheet displays the temperature dependent
properties and associated tabulated values. A back button allows quick return to the table of all properties.

8
International Conference on Environmental Systems

A material comparison sheet is also provided to compare properties. 10 drop down menus are included, each
containing all available materials. Selecting a particular material populates the specific heat and thermal
conductivity data table and updates the data displayed in the plots. If the property value is constant, the data is
shown as a constant value ranging from a default of 0 to 400. Figure 11 depicts the worksheet after specifying 10
different materials.

A (] ¢ e ' (] '] K L M N O P Q@ r s 1 U v &~ X ¥ I AR M A M M N M A A A K M MM

2 BUS AI7075-T73 |5 HGA_Fitting Conductivh HGA YSHSOA-#53 Lamin] BUS_IC_GIOCR 8US_ X130 CGI_ALEOSITE coineasy | com COR_SIGASS |5 Adarminum 1100 4K--5;
» Yf(pl1]\['](;1![(11[(9[YjKIVI(leIKI'I('pI‘ItIII(p]!l(Tl rklv|plrlx|lrloplrcklrlelr]x
0 0 &5)) T % 16| 10 637 162 » T

s 0 241
n 3

%0 3
10

Plotting |

Figure 11. Materlal Comparlson Sheet The excel sheet dlsplay graphs of specmc heat and thermal conductivity in
the x-direction for up to 10 materials. Each material has its respective values beneath the graphs.

VIIl. Framework and Interface

The various capabilities described in this paper were added to the framework® developed at the Goddard Space
Flight Center. Table 1 lists the new functions added, and a complete list of functions in the framework may be found
in the appendix. The goal was to minimize, as much as possible, the need for a graphical interface to access the
capabilities of the framework, allowing users to develop their own interface to the framework capabilities. Entries in
italics utilize the OpenTD API, while the others are utility functions that do not require a connection to the API.

Framework Function Purpose

Process SINDA .inp file and add logic to .pid file to apply Predictor/Corrector
GenerateDampedPropHeatersInSSForPIDs approach for all PID controllers

Generate Compare_Summary sheet highlighting the differences between two
GenerateHtrDisSummaryCompare HtrDis postprocessing files

Extract Material and Optical property data and generate Tables in Excel
WritePropsToXL workbook along with temperature dependent material property plots

Return data structure with deterministic global visibility state for each
GetTDGlobalVisibilityStates Thermal Desktop object type (e.g. TD/RC nodes, Surfaces, HeatLoads, etc)
TurnNodelDsOnForSelectedNodes Evaluate user provided node list and turn node number visibility on in GUI
GetTDObjectCounts Retrieve counts for each TD object type for each submodel
GetTDReferencedProperties Retrieve list of Material and Optical properties used by each submodel

Retrieve counts for each TD object type and lists of Material and Optical
GetTDObjectCountsAndReferencedProperties | properties for each submodel
GetAllReferencedRCOFiles Make list of all Optical files that were referenced throughout all CaseSets
GetAllReferencedTDPFiles Make list of all Material files that were referenced throughout all CaseSets

Table 1 — List of new Functions added to GSFC Developed Framework

The GUI developed at GSFC was updated to provide a means of access to these functions without the need for a
user to write their own code to access the functionality. This GUI is currently split across two separate tabs; one is
useful for manipulating and processing files and executing CaseSets. The other is geared toward utilities for model
integration/comparison. This GUI is depicted in Figure 12.

9
International Conference on Environmental Systems

Thermal Utilities Plus

Uities | Conversion _ Integration

Drawing File |Duub\e Click in any of the Text Boxes below to Select Files

| [—Drawing Actions— |

CaseSet |

| Fier [| [Caseset Actions— |

RunCase Run Cases

Radtion Task to Fter |

v‘ Use Existing Files if found

Submodel/Pattem to Match

By Cutalf By Sum Keep As

Submodel Fiename

Thermal Utilties Plus

Utitis Conversion Integration

‘Source Drawing File

[hpeabody\Documents \Spacecraft\W FIRST\FosiCDR\Delivered_Models\BUS\ROMAN-SC4F_FINAL\ROMAN-SCAF_FINAL dwg|

Destination Drawing e [C:\Users hpeabody\Documents \Spacecralt WFIRST\PostCDR\ROMAN-S4F-12K-T26_C3_-W3IAG1D-DTM-DA v62_2018.dng

Source Submedels

“INACTIVE

Objects Opticals Materials

Object Counts

Symbols | CaseSets

Obiject List

Total Nodes 84

CDH A:=:1D0ACC
Power: 50.106

Add Logic For: [7] Heater/Dissipation Processing [7] PID S5 Controller | Convergence Trace | Make Case | Fun Case Bus.¢f a2

G
Measures: 0

. CDH B::1D0ACD
Mirimum Threshold... 1 I[| Sohoer By odes 0 Fower 6531
A [suswonet T oo | o3| i \ i

loies
L I | N | I[\ E St
. E— — — | \ S =

icte
ol] \ I | SCOMN

BUS _COMM g?:TRANSP
TWT

Compie |] BUS_CORE

8US_DPE
BUS FITTINGS

ptics Fie | |

Themo Fie |

BUS_FRGF_BRKT
| BUSTGC

putFle | ”—\npmkﬁ\nni— v‘

ConCap Fie [| BUS_HGA_BACKTS

Output Fle | | [Output Actons— | Han s

SavFle | |

BUS_HGA_RJ
] BUS_HGA_SBAND_FEED < >

BUS_HGA_STRUCT
| Delimiter || Adaress

Al HTR
| <
Tetfie | |
[

Bcelfie |

Compare Domain Tag Sets Check Heater S5 | | Compare Assemblies | | Compare Object Courts

SheetName

Tag

Radk Fiie 1 | Output Fiter

—Radk Actions—

Ready Ready

Figure 12. Simplistic Graphical User Interface to access framework functions: A simplistic interface was
developed to more easily specify files and parameters to access the framework capabilities

IX. Conclusions and Path Forward

The continued addition of capabilities to the OpenTD API has allowed users greater access to the internal data in
Thermal Desktop models. The Goddard Space Flight Center continues to explore the exposed data, seeking new
methods to optimize our thermal analysis process and expand our capabilities. The ability to inject these features
into the model execution process has helped streamline the process and minimizes the amount of user intervention
required to take advantage of the developed features.

The most recent efforts have focused primarily on improving the model integration and verification part of the
process. These added abilities allow a quick check that the same number of objects are present in both the source
and integrated models for each submodel and to import symbols from delivered case sets into their counterparts in
the integrated model. Further development of the “Compare” capability of the Heat Load, Heater, and PID
Controller summary sheets also allows for the verification of consistent predictions between delivered and integrated
models. To provide better documentation of the optical and material properties, the output from the previous code
was improved to more easily visualize the data extracted from the models. Lastly, the development of a new heater
routine for better predictive capabilities of PID controlled heaters is already beginning to pay dividends for the
Roman Space Telescope project, with a considerable reduction in the necessary run time to achieve quasi-steady
predictions for many of its mission modes. Furthermore, the ability to utilize steady state solution predictions,
bypassing the need for longer transient runs, is also being investigated and shows promise at this time. While this
code was developed specifically for SINDA, the algorithm is fairly easily convertible to other codes that utilize a
similar solution structure as SINDA with convergence and VARIABLES user logic blocks.

The process is currently underway to allow the release of these capabilities to the wider community, both the
executable and the source code, with the hope that other organizations will add to these capabilities and also share
their developments with the community. At this time, there are no plans to output to other formats, but once the
source code is released, any users wishing to expand the output options to other formats (e.g. web-based pages) are
free to utilize the framework provided to assist in that effort. As new capabilities are added to the OpenTD API,
GSFC will continue to explore the exposed data seeking even more improvements to its analysis processes and work
to share them with the thermal community.

Acknowledgments
The primary author would like to thank the Roman Space Telescope project for continuing to support the
exploration of the API to improve our processes and reduce the model run time.

References

! Peabody, H., “Extending the Capabilities of Thermal Desktop with the OpenTD Application Programming Interface” ICES-
2020-297, 50" International Conference on Environmental Systems, 2020

2Peabody, H., “Tracking Critical Thermal Metrics throughout the Life Cycle of a Large Observatory Thermal Model” ICES-
2020-298, 50™ International Conference on Environmental Systems, 2020

10
International Conference on Environmental Systems

3 Peabody, H., Yee, E., “Run Time Improvement Efforts for the Roman Space Telescope Thermal Analysis” ICES-2021-253, 51
International Conference on Environmental Systems, 2021

Appendix

The table below lists the current functions in the framework. Those with a preceding * are newly added. Those in
italics interface directly with Thermal Desktop through the OpenTD API, while the others interface with files that
may or may not have been generated using Thermal Desktop and does not require the API.

Framework Function Purpose

Process SINDA .inp file and add logic to .htr file to output Heater and
GenerateHeaterDissipationLogic Dissipation output logic for every timestep

Process SINDA .out file and retrieve output generated from
ProcessHeaterDissipationResults GenerateHeaterDissipationLogic and import into Excel template workbook

Process SINDA .inp file and add logic to .pid file to apply Predictor/Corrector
*GenerateDampedPropHeatersInSSForPIDs approach for all PID controllers

Generate Compare_Summary sheet highlighting the differences between two
*GenerateHtrDisSummaryCompare HtrDis postprocessing files

Convert 2D array to comma-separated value output file (can include Header
Write2DArrayToCSVFile row and Output Mask)
ImportFilelntoExcel Import specified text file into specified Excel location, parsing on delimiter

Extract lines beginning with TagID from OutFile and import into specified
ExtractTaggedLinesAndImportintoExcel Excel location, parsing on specified delimiter

Return data structure with deterministic global visibility state for each
*GetTDGlobalVisibilityStates Thermal Desktop object type (e.g. TD/RC nodes, Surfaces, HeatLoads, etc)
*TurnNodelDsOnForSelectedNodes Evaluate user provided node list and turn node number visibility on in GUI
*GetTDObjectCounts Retrieve counts for each TD object type for each submodel
*GetTDReferencedProperties Retrieve list of Material and Optical properties used by each submodel

Retrieve counts for each TD object type and lists of Material and Optical
*GetTDObjectCountsAndReferencedProperties | properties for each submodel

*GetAllReferencedRCOFiles Make list of all Optical files that were referenced throughout all CaseSets
*GetAllReferenced TDPFiles Make list of all Material files that were referenced throughout all CaseSets
RemoveRadk1FromRadk2 Outputs file with all the Radks that appear only in Radk File 2

Outputs file with inputs and logic to represent all the Radks in Radk?2 but not
ReplaceRadk2MinusRadk1WithBackloads in Radk1 as Backloads along with radiation to sink

Outputs file with inputs and logic to represent all the Radks in Radk2 but not
ReplaceRadk2MinusRadk1WithHeatFlowslJ in Radk1 as a Heat Flow

Generates temporary case set, outputs CC file and processes this for evaluated

EvaluateSymbolsInDWGFile symbol values

Generates temporary case set spawned from user specified case, outputs CC
EvaluateSymbolsForSpecifiedCaseSet file and processes this for evaluated symbol values
ExtractSymbolEvaluatedVValuesFromCCFile Process CC file header and retrieves symbol names and evaluated values

Read TD object and extract optical properties and store in
GetTDOptProps GMM_OpticalProperties collection

Read TD object and extract thermophysical properties and store in
GetTDThermoProps GMM_ThermophiysicalProperties collection

Extract Material and Optical property data and generate Tables in Excel
*WritePropsToXL workbook along with temperature dependent material property plots

Read TD object and extract Notes data and Splice together all Tabs into single
GetTDNotes output text file

Return path to either DWG file if No CaseSet specified with UserDirectory, or
GetTDRunDirectory to UserDirectory

Execute case set in its own directory with options to add heater dissipation
RunSpecifiedCaseSet and convergence trace logic

11

International Conference on Environmental Systems

