
 ICES-2020-297

Extending the Capabilities of Thermal Desktop with the

OpenTD Application Programming Interface

Hume L. Peabody1

NASA-GSFC, Greenbelt, MD 20771

With the release of Thermal Desktop 6.0, users now had the ability to interface with some

of the many elements and constructs of a Thermal Desktop model through external

applications developed using the TD API (Application Programming Interface). This file

allows applications to be developed in the .NET framework and interface to a number of

object types within a Thermal Desktop model. The release of 6.1 expands the subset of

objects able to be manipulated and now includes the raw geometrical information of

surfaces. With the release of 6.1, the API was now referred to as OpenTD. This paper

discusses some of the utilities and capabilities developed using the OpenTD API at the NASA

Goddard Space Flight Center. These include utilities to help with configuration control of

models and case sets, addition of logic to better process heater performance, and a

methodology implemented to allow for submodel level processing of radiation couplings to

include smaller radks where needed in a cryogenic region without using the same criteria for

the warmer portions of the model. This last utility is targeting a reduction in run time

without sacrificing accuracy. Lastly, some lessons learned, work-arounds, and wishes for the

next release of the OpenTD API are also presented.

Nomenclature

ASCII = American Standard Code for Information Interchange MLI = Multi-Layer Insulation

API = Application Programming Interface NASA = National Aeronautics and Space Administration

GMM = Geometric Math Model SINDA = Systems Integrated Numerical Difference Analyzer

GSFC = Goddard Space Flight Center TMM = Thermal Math Model

GUI = Graphical User Interface UV = UltraViolet

IR = InfraRed VB.NET = Visual Basic.NET programming language

I. Introduction

hermal Desktop® is an analysis tool commonly used by NASA-GSFC for the thermal modeling of spacecraft

and instruments. It utilizes the AutoCAD program as the front end and graphical user interface to allow analysts

to construct geometric math models (GMM, which are used to compute radiative exchange factors and radiative

heatloads from external sources) as well as generating a network thermal math model (TMM, which is solved to

predict temperatures). Thermal Desktop is one tool in a suite of tools from the vendor that allows analysts to tailor

the tools they need for particular analysis types. Thermal Desktop provides for the front end building of thermal

models and post processing of thermal results; RadCAD extends the capabilities to include Monte Carlo ray tracing

computations for radiative exchange and orbital heating; SINDA/FLUINT solves the thermal network model to

generate temperatures; FloCAD allows users to construct graphical representation of flow entities in Thermal

Desktop to construct coupled fluid-thermal models.

However, being in AutoCAD does come with a limitation; the thermal model data is stored in a proprietary,

binary format and is not directly accessible to the end user unlike other tools that use an ASCII format to store

model data. This limitation inhibits the ability of end-users to develop additional tools and capabilities that can

interface directly with the thermal model data. To address this limitation, the software vendor has recently added an

application programming interface (API) that exposes selected data to the user through a dynamic linked library that

interfaces with an AutoCAD application instance with the specified drawing file open.

The original introduction of this capability was provided with the 6.0 release of Thermal Desktop (known as the

TDAPI) and was limited to a fairly large subset of entity types. These included: Nodes, Lumps, Paths, Ports, Pipes,

1 Staff Thermal Engineer, Mail Stop 545, Goddard Space Flight Center, Greenbelt MD 20771.

T

International Conference on Environmental Systems

2

Ties, Optical Properties, ThermoPhysical Properties, CaseSets, Symbols, Heaters, Heat Loads, Layers, and

Submodels. Notably missing from this list, however, are surfaces which form the heart of both the GMM and TMM

data. The original TDAPI was developed to aid in the conversion of SINAPS models into Thermal Desktop as the

software vendor was retiring the SINAPS application around the same time, since most of the SINAPS capabilities

could now be duplicated using the aforementioned FloCAD application. Examining the list of supported entities

shows a close alignment with the fluid constructs that would be common in a SINAPS model.

The release of Thermal Desktop v6.1 added access to the surface data and the API was renamed as the OpenTD

API1,2. This paper describes some of the features in the API, how to access them, and some utilities that were

developed in Visual Basic .NET at NASA-GSFC using the API. These include utilities to better evaluate heater

performance, capture model documentation information, and further filter radiation coupling terms for thermal

model run time optimization.

II. Basic API Structure

The API is accessed by including a reference to the OpenTDv61.dll (or alternatively the TDAPIV1.dll if using

6.0) in the project. The OpenTD API was developed in C#.NET and is compatible with any other languages that are

compatible with the .NET framework. Including the reference allows for variables to be created based on the

OpenTDv61 namespace. To establish a connection with Thermal Desktop, a variable of ThermalDesktop type is

created (e.g. Dim TD as New OpenTDv61.ThermalDesktop). Once created, the drawing file to be accessed is

specified by setting the TD.ConnectConfig.DwgPathname property. Following this with a call to the

TD.Connect() method establishes the link with either an existing AutoCAD application that is already open with

the specified drawing file or creates a new instance in which the specified drawing file is subsequently opened. At

this point, all of the exposed data is now available for further investigation or manipulation.

Further variable types may be created on the program side to hold data retrieved from the model in Thermal

Desktop. For example, declaring a variable as a list of CaseSet type [Dim CaseSets As List(Of OpenTDv61.
CaseSet)] allows the variable to be populated by all the CaseSets in the model via a call to the GetCaseSets

method [CaseSets = TD.GetCaseSets()]. Alternatively, if a CaseSet name is already known, a variable to hold

the CaseSet can be declared [Dim MyCaseSet As OpenTDv61.CaseSet] and then populated with a call to the

GetCaseSet method [MyCaseSet = TD.GetCaseSet(“Cold Case”)]. It should be noted that the CaseSet name

is expected to be unique and is the identifier by which the API identifies the CaseSet. If two CaseSets are identically

named, the results are uncertain as to which one would be associated with the variable. If a CaseSet variable is

modified on the program side, any updates must be committed to the Thermal Desktop application by a call to the

Update method [MyCaseSet.Update()]. If a new CaseSet is to be created, the CreateCaseSet method should be

used with a unique name as the argument [MyCaseSet = TD.CreateCaseSet(“New_CaseSet”)]. Lastly, to

delete a CaseSet, the DeleteCaseSet method should be used [TD.DeleteCaseSet(“New_CaseSet”)]. Similar

Get---s, Get---(), Create---(), and Delete---() methods exist for most of the other object types listed above (e.g.

optical property, symbol, etc). The basic process for making changes to a model would be the same regardless of the

entity type; (1) retrieve the object from the AutoCAD instance and store in the appropriate variable type, (2) make

the desired updates to the variable, and (3) commit the changes to the AutoCAD instance with the Update method.

If data is only being retrieved from the AutoCAD instance and is then manipulated and organized only on the

program side, then the last Update step is not necessary.

To access surface properties, a different method is employed since the Get/Set type methods currently do not

exist to retrieve all geometric surface type (e.g. rcCone). Instead, a generic approach utilizes the IDbIterator

object to step through the AutoCAD database and retrieve the objects sought. To accomplish this, a variable of

IDbIterator type must first be created and set using a call to the CreateDbIterator method of a

ThermalDesktop object. Next, variables and lists of variable types sought should be declared. Then, a WHILE loop

should be established that continues until the .Done method returns a true value. While in the loop, the object type

sought should be set via the DBObject call to the IDbIterator variable. If this returns back a value that is not null

(Nothing), then the current object meets the type sought and it can be extracted and added to a List Of type variable

or modified directly. Lastly, a call to the .Step method advances to the next object in the database. A snippet of

code is shown in Figure 1 that would retrieve all rcRectangle type objects and store them in a List of rcRectangle.

These functions and capabilities have already been utilized to develop utilities to assist with model modification,

model documentation, and filtering of radiation couplings and will be used to develop future capabilities as

additional needs are identified. Users interested in exploring the OpenTD API are encouraged to begin with the

“Getting Started with OpenTD 61.pdf” file2 included with the Thermal Desktop installation.

International Conference on Environmental Systems

3

III. Evaluating Heater Performance

Heaters are a common entity type in thermal analysis. However, capturing the performance of a heater

throughout a thermal analysis simulation can be challenging. Typically, predictions from a transient simulation are

output periodically, but it is highly unlikely that this output cadence will align with each and every heater in a

model. Therefore, it is preferable to output each heater’s critical data (sensing temperature, power state) every

timestep. Unfortunately, this is not a native capability provided by commercial thermal solvers at this time. To

varying degrees, commercial solvers track some metrics and provide a composite value at the end of the run, such as

number of cycles, average power, peak temperature, etc. However, this data may be insufficient for evaluation of

tight stability requirements, in particular over varying ranges of time (e.g. stability over 180 s, over 2 hours, etc).

A routine was developed to evaluate the CondCap file produced by Thermal Desktop and extract heater

information, including: name, on point, off point, available power, sensing temperature, and applied power, with the

latter two varying over time. Based on this processing, SINDA logic is generated that outputs the time varying

heater parameters (sensing temperature and applied power) at each timestep and tags the output lines with a prefix to

allow easy extraction of the relevant lines from the output file. This logic file is then included in the TMM input file

prior to model execution. A similar capability was also developed to process the heat load dissipations and the

average temperature where the load is applied. A corollary routine was developed to extract these lines based on the

aforementioned tags and import the data into Microsoft Excel® for further processing. The data is imported into a

new workbook based on a standard template that includes additional worksheets to facilitate plotting (Figure 2),

tabular summaries of the heat loads (Figure 3) and the total power usage for the model. One considerable advantage

of this approach is that it shows exactly what is in the TMM file. For large and complex Thermal Desktop models, it

can be difficult to fully understand the configuration in a CaseSet with all the dependencies on symbols and logic.

 Dim DB As OpenTDv61.IDbIterator
 Dim Rectangles As List(Of OpenTDv61.RadCAD.Rectangle)
 Dim Rectangle As OpenTDv61.RadCAD.Rectangle
 DB = TD.CreateDbIterator
 While Not DB.Done
 Rectangle = DB.DbObject
 If Not IsNothing(Rectangle) Then Rectangles.Add(Rectangle)
 DB.Step()
 End While

Figure 1. Code snippet to retrieve all rcRectangles: Accessing geometric entities requires stepping through the

AutoCAD database to find objects matching the type sought

Figure 2. Sample Heater Plotting Up to 4 heaters may be plotted simultaneously with sensing temperature on

the primary axis and heater power on the secondary axis

International Conference on Environmental Systems

4

Although this capability does not explicitly utilize the OpenTD API, it was later added as an option to

automatically add the heater processing logic when executing a model using the API. This is discussed further in

Section IV.

IV. Model Documentation

Model documentation is a fairly tedious process. Thermal model data is not neatly compartmentalized into

discrete “cards” or “blocks” like finite element models (one card for nodes, one card for materials, one card for

elements, etc). Thermal data can include heaters, conductors, heat loads, optical properties, material properties, etc

Any of these entities may also have a further dependence on symbols. Likewise, symbols may also have

interdependencies on other symbols making it difficult to ascertain a given symbol’s value without tracking all the

relationships. Furthermore, CaseSets can include over-rides for symbols, optical properties, and thermophysical

properties that are only applicable to that specific case. For example, a cold case might include Beginning of Life

optical properties as well as lower values for heat dissipations whereas a hot case may include End of Life optical

properties and higher values for dissipations. These values may be defined only in the CaseSet or they may be

defined in symbols that depend on another symbol to indicate the configuration (e.g. a state flag).

A VB.NET framework was developed including functions to extract optical property values, thermophysical

property values, symbol values, and model notes directly from the base drawing file. Additional functions were also

developed to extract the same information for a specified CaseSet based on the values in the over-rides. For the

optical property extraction, the UV and IR Absorptivity, Reflectivity, and Transmissivity as well as the specular

percentages for reflectance and transmittance are extracted for each property with the IR absorptivity serving as the

emissivity. It should be noted that with the current version of the API, there is not the ability to identify the current

optical property and thermophysical property files used by the drawing file; therefore, it is possible to extract the

optical property and thermophysical property values, but the associated filename is not available. However, for

CaseSet property over-rides, the specified filenames are available. Sample output of optical property data is shown

in Figure 4. For thermophysical properties, the possibility exists for both anisotropic thermal conductivity as well as

temperature dependent thermal conductivity and specific heat. Furthermore, the density and MLI effective

emissivity values are also extracted Sample output is shown in Figure 5.

Figure 4. Sample Optical Property Extraction from Thermal Desktop Model Optical property values are listed

along with source file (if available).

Figure 3. Sample Heater and Dissipation Summary Heatload and heater information is output to summary table,

including min, average, and max power, heater on/off points, duty cycle, etc

International Conference on Environmental Systems

5

For symbols, the challenge exists that the API only provides access to the symbol expression and not its evaluated

value. The evaluation of symbols, which can have very complex inter-dependencies including (Expr) ? TrueVal:

FalseVal type logic, would require considerable development to evaluate based purely on the data available through

the API. However, a work-around was employed that creates a temporary CaseSet and generates the CondCap file,

which includes all the symbols as well as their evaluated values in the header comment block. This file is then

processed and the connections established between symbol name, group, expression, comment, and evaluated value

This approach allows Thermal Desktop to use its built in capabilities that evaluate all the symbol inter-dependencies

to evaluate a symbol’s value and does not rely on reinventing the well tested code within Thermal Desktop. For the

nominal drawing symbol extraction, all the Symbols are included in the output. However, for a CaseSet symbol

over-ride extraction, the evaluated symbol values are compared to the base values and if no differences exist, then

only the symbols affected by the over-rides are output. This makes for a much smaller subset of values rather than

the entire set of symbols but does include any symbols that are over-ridden as well as symbols whose evaluated

values also depend on the over-rides. Figure 6 shows sample output for the symbol extraction for a specified

CaseSet. A similar work-around could also potentially be used to extract the thermophysical and optical property

filenames from the CondCap file, alleviating the aforementioned limitation that the files referenced by the drawing

file were not available through the API.

Lastly, the development of a generic routine to extract tagged data (e.g. lines beginning with a specified string)

and import them into Excel (similar to the heater and dissipation lines) further allows for user specified logic to be

included to output data of particular interest at each timestep and extracted to Microsoft Excel.

Figure 6. Sample Symbol Extraction from Thermal Desktop Model (CaseSet) Note that while BUS_SCESTAR is

not explicitly over-ridden, its evaluated value depends on HOT, which is explicitly over-ridden The CaseSet and

drawing file are also identified.

Figure 5. Sample Thermophysical Property Extraction from Thermal Desktop Model Thermophysical property

values (including temperature dependence and anisotropy) are listed along with source file (if available).

International Conference on Environmental Systems

6

V. Radiation Coupling Filtering

Early in the Wide Field InfraRed Survey Telescope program, as concerns grew regarding model run time, a

hybrid radiation coupling filtering approach was proposed3. This hybrid approach would output two (or more) sets

of radiation couplings with different filter criteria (Bij Cutoffs, Bij Sums) but from the same computation run. Then,

couplings would be extracted connected to a subset of nodes from one set and all but the subset of nodes from the

second set. This approach resulted in sufficient detail for a cryogenic region (where smaller radiation couplings may

be more significant) while not needing the small radiation couplings throughout the model and increasing the

associated run time. Although the project did not implement this as a matter of course due to the frequent updating

of the model and the effort required to configure the model for this, it was recently revisited with the availability of

the OpenTD framework due to the ability to automate this process using the API.

 Aside from being able to modify and manipulate objects with the OpenTD API, a user also has the ability to

execute CaseSets using the .Run method. Therefore, code was developed to execute a user specified CaseSet with

some modifications to the execution process. First, the function allowed for the execution of the model in its own

directory based on the CaseSet name. Determining the directory requires some care as the model may be written to

the same location as the drawing file, or if defined by the .UserDirectory properties may be in an alternate

directory. The usage of “..\” and “.\” relative path type syntax also complicates determination of the intended

directory for model execution as these locations need to be resolved relative to the specified drawing file. A function

was developed to determine this directory for a specified CaseSet. Once determined, this CaseSet subdirectory is

created and after the input file is created, a copy of the input file is placed into the newly created directory.

Furthermore, a paths.txt file is also created in the directory pointing back to the location of all files included via

INSERT directives by SINDA. An option was also provided to allow the user to add the heater processing logic

automatically as described in Section III.

Having developed the capabilities to manipulate

parts of the model execution process, a second routine

built on this ability and added radiation coupling

filtering as an option. This filtering process is illustrated

in Figure 7. The top portion shows four available levels

of filtering, where each filter includes: Pattern, Bij

Cutoff, Bij Sum, and filtered Radk Filename. The user

also specifies the CaseSet and base Radk Filename,

which identifies which RadiationTask in the CaseSet

should be used to spawn the additional RadiationTasks

with the new Bij Cutoff, Bij Sum, and output filenames

as specified by the user. The updated CaseSet is then

executed and the additional radk output files are created

based on the new Bij Cutoff and Sum values. These

output files are then further processed and all couplings

connected to nodes not included in the pattern are

removed. For the example in Figure 7, the pattern for

filter A is MS, and only couplings connected to a

submodel with MS are kept. The pattern for filter B is

BP, and only couplings connected to BP are kept,

unless they are also connecting MS and BP nodes, since

these were already included in processing filter A.

Figure 7 shows the couplings removed in strikethrough

and couplings that are kept in bold red. This process

repeats for filters C and D if applicable. Lastly, any

couplings connected to nodes not meeting any of the

pattern matches are output from the base RadiationTask

output and its filter criteria, which should be less

stringent than all the other RadiationTasks that were

spawned. The end result is multiple radk files, but with

fewer total radiation couplings. Smaller couplings are

kept only for portions of the model where the benefits

are justified.

Figure 7. Sample Process for Radk Filtering: The first

file removes all couplings not connected to the pattern.

Subsequent files must also account for couplings already

included from previous filter steps. In this example, MS

couplings are kept from the 98% file, and BP couplings

are kept from 95% file as long as they were not already

kept from MS processing. All remaining nodes not

matching any patterns are captured last.

International Conference on Environmental Systems

7

VI. Framework and Interface

The various capabilities described in this paper form the framework of functions listed in Table 1. The goal was

to minimize, as much as possible, the need for a graphical interface to access the capabilities of the framework,

allowing the user to develop their own interface to the framework capabilities. Entries in italics utilize the OpenTD

API, while the others are utility functions that do not require a connection to the API.
Framework Function Purpose

GenerateHeaterDissipationLogic

Process SINDA .inp file and add logic to .htr file to output Heater and Dissipation

output logic for every timestep

ProcessHeaterDissipationResults

Process SINDA .out file and retrieve output generated from

GenerateHeaterDissipationLogic and import into Excel template workbook

ExtractTaggedLinesAndImportIntoExcel

Extract lines beginning with TagID from OutFile and import into specified Excel

location, parsing on specified delimiter

ImportFileIntoExcel Import specified text file into specified Excel location, parsing on delimiter

EvaluateSymbolsInDWGFile

Generates temporary case set, outputs CC file and processes this for evaluated

symbol values

EvaluateSymbolsForSpecifiedCaseSet

Generates temporary case set spawned from user specified case, outputs CC file

and processes this for evaluated symbol values

ExtractSymbolEvaluatedValuesFromCCFile Process CC file header and retrieves symbol names and evaluated values

Write2DArrayToCSVFile

Convert 2D array to comma-separated value output file (can include Header row

and Output Mask)

GetTDOptProps

Read TD object and extract optical properties and store in

GMM_OpticalProperties collection

GetTDThermoProps

Read TD object and extract thermophysical properties and store in

GMM_ThermophiysicalProperties collection

GetTDNotes

Read TD object and extract Notes data and Splice together all Tabs into single

output text file

GetTDRunDirectory

Return path to either DWG file if No CaseSet specified with UserDirectory, or to

UserDirectory

RunSpecifiedCaseSet

Execute case set in its own directory with options to add heater dissipation and

convergence trace logic

CreateSubmodelSpecificRadiationTasks

Create multiple Radiation Tasks with various Bij Sum/Cutoff and then filters

output files for associated specified submodels/ patterns

Table 1 – List of Function in GSFC Developed Framework

A simple Graphical User Interface (GUI) was developed at GSFC to facilitate easier usage of the functions in the

framework with efforts made to minimize the amount of “action” code associated with the GUI controls (e.g. a

button click simply passed a textbox value to a framework function rather than having the framework capability

defined in the button click event). This GUI is depicted in Figure 8.

Figure 8. Simplistic Graphical User Interface to access framework functions: A simplistic interface was

developed to more easily specify files and parameters to access the framework capabilities

International Conference on Environmental Systems

8

VII. Limitations and Workarounds

Aside from some of the workarounds described earlier, such as extracting evaluated symbol values and baseline

property file names from the generated .cc file, some additional workarounds were found to further access data not

yet exposed by the API. One of the major limitations of the API for version 6.1 is the lack of access to existing

Finite Element data, prevalent in many Thermal Desktop models. Elements may be created, but existing elements

cannot currently be polled to inspect or extract their data. However, a methodology was developed that can

determine: (1) the nodes used to form an element and their locations, (2) the thickness, (3) material, (4) material

orienter assigned, (5) the optical properties assigned to the top and bottom sides, (6) the assignment of active sides

for each radiation analysis group, and (7) the assignment of MLI on top and bottom. At the heart of this method is

the use of the entity handles (the unique identifiers for each object in the AutoCAD database) as well as the ability to

send commands and retrieve the command history through the API. While this process is neither efficient nor quick,

it is at this time the only way known to access the Finite Element data.

To begin, the DBIterator should be used to step through the entire database, one object at a time. Each object

includes both a Type property and a Handle property. Knowing the object type, allows an application to select how

to access data associated with the object. Knowing the Handle allows the object to be selected using API methods

or AutoLISP code to interface with the AutoCAD instance. Use of the SendCommand method of the API in

combination with the handent AutoLISP function and the LIST AutoCAD command will execute the command and

send the output to the AutoCAD text window [e.g. TD.SendCommand("list (handent ""A1A1A"") ")]. The

GetCommandHistory method of the API retrieves a string of the result of the sent commands. This text can then be

parsed to extract the node numbers, material, thickness, and material orienters. Knowing the node numbers, the API

can then access the XYZ locations in space. Unfortunately, the LIST output for a Finite Element does not include

any further information about the radiative properties, so an alternate method must be used to access that data.

To extract the radiative activity, optical property assignments, and application of insulation information, a model

check from the Thermal Desktop interface (Output Node Optical Property Summary) can be executed that indirectly

provides this information in the form of an Excel spreadsheet. Fortunately, the API does include the ability to

specify the active Radiation Analysis Group and SendCommand can be used with rcOutputNodeOpticsSummary and

rcOutputAnalGroupSummary to generate the Excel files. Data included in the OpticsSummary spreadsheet is for the

current active Radiation Analysis Group and includes: (1) node number, (2) optical property, and, most importantly,

(3) object type, handle, and side (e.g. Quad Elem-TOP::A1A1A). If a node number is associated with an element,

but is not used to define the element, it can be inferred that this node must be an insulation node. For example, node

100001 is found for element A1A1A, but the element is made up of nodes 1, 2, 3, and 4. Since finite elements do

not allow partial insulation to be assigned, the other nodes associated with element A1A1A can be used to determine

the insulation offset. Lastly, the radiative activity can be inferred from this file based on which node numbers are

found in the file, as it only includes surfaces assigned to the active Radiation Analysis Group. Varying the active

group and evaluating each of the spreadsheets generated would allow the full radiative activity to be defined. The

AnalysisGroup spreadsheet output includes the active sides for all groups associated with the node numbers.

The above method has been preliminarily tested, but has not yet been robustly developed at GSFC. Once

development is complete, this method will be integrated into a previously developed framework for the conversion

of geometrical models4. With the geometric data stored in an application, metrics could then be used to establish if

two surfaces in different models are indeed identical (e.g. same shape, location, size, nodes, etc) even with differing

handles. This could be used to ensure consistency between delivered and integrated models (independent of their

assigned handles) by comparing all surfaces, conductors, contactors, heatloads, etc. Furthermore, this ability could

also allow for the import of Domain Tag Sets from a source model to the destination model. By identifying the

properties of surfaces in a source Domain Tag Set and comparing them to surfaces in a destination model, the

Domain Tag Set could then be redefined in the destination model.

One last capability that is not inherently available in the API is the ability to turn on or off the local display of a

specific entity. Furthermore, there is currently no dedicated API method to determine the global visibility for a

given entity type. However, again the use of the SendCommand method can be employed with the

rcToggleSurfaceVis command (or any of the other rcToggle commands). By sending this command twice, it results

in no change to the global visibility, but the resultant text can be extracted using GetCommandHistory and parsed to

determine the current visibility state. Furthermore, the use of the handent AutoLISP routine in combination with the

SendCommand method and the rcVisOn and rcVisOff commands would allow for the local visibility of an object to

be specified based on its handle. This could allow for the save and retrieval of dedicated views of specific geometry

or other thermal objects and could be further extended to include the view direction and magnification for saved

views, which may be useful in the generation of consistent images for reports or presentations.

International Conference on Environmental Systems

9

VIII. Conclusions and Path Forward

The introduction of an API to access the internal parameters of a Thermal Desktop model provides users with an

immense amount of power to further the capabilities of the software. Already this API has been used in the

development of the Veritrek tool5 and by the European Space Agency to improve model exchange via the STEP-

TAS protocol. Early usage of the API has also improved productivity at GSFC, allowing external modification of

Thermal Desktop generated files prior to model execution to improve the output of heater and dissipation

performance as well as to allow the extraction and capture of thermal model data such as properties, symbols, and

notes. Furthermore, the ability to filter radiation couplings based on submodel or pattern specific cutoff and sum

values can result in smaller matrices for the thermal solver without sacrificing accuracy in areas where radiation heat

exchange is critical, such as a cryogenic region, thus improving model run time. The utilities developed in the

framework as well as other external tools have been used extensively to capture results and configuration details of a

large scale observatory as the design evolved6 to track the impact of updates on the thermal performance.

Future efforts are already envisioned to further develop productivity improvement utilities including CaseSet

comparisons across more than two CaseSets as well as allowing symbol over-rides to be copied from one CaseSet to

other CaseSets. The model conversion efforts4, began earlier, may also now be updated to support import and export

of Thermal Desktop models. Some additional desired features that could be added to the API by the vendor include

the ability to access post-processing data mappers through the API and the ability to pass a selection set of objects

from the AutoCAD instance to the program through the API. With potential future additions to the API by the

vendor, even more utilities can be conceived, such as standard image generation for reports and generation of

comparison contour plots for thermal distortion mapping efforts. While it is not covered in this paper, potential

users should also be aware of a second aspect of the OpenTD API which addresses the processing of results files and

is accessed through a second reference to the appropriate namespace. The long term plan for the development of

these tools at GSFC is to provide the source code as open source in the hopes that other organizations may follow

suit to improve the thermal analysis capabilities of the community at large. With the development and sharing of

productivity enhancing utilities, the entire thermal community stands to benefit from the groundwork laid by the

development of the OpenTD API with Thermal Desktop.

Acknowledgments

The primary author would like to thank Matt Garrett at Cullimore and Ring Technologies for helping to come up

to speed on the API and provide the way forward when obstacles were encountered during development.

References
1 OpenTD API Product Brochure: https://www.crtech.com/sites/default/files/files/Brochures/api.pdf

2 Documentation with Thermal Desktop install: Getting Started with OpenTD 61.pdf

3 Peabody, H., et al, “Addressing Thermal Model Run Time Concerns of the Wide Field Infrared Survey Telescope using

Astrophysics Focused Telescope Assets (WFIRST-AFTA)” ICES-2016-188, 46th International Conference on Environmental

Systems, Vienna Austria, 2016.

4 Yang, K., Peabody, H., “Preliminary Development of a TSS and SINDA/FLUINT to ESARAD/ESATAN Thermal Model

Converter” TFAWS-2014-PT-03, 2014 Thermal And Fluids Analysis Workshop, Cleveland OH, 2014.

5 Hengeveld, D., Moulton, J., “Automatic creation of reduced-order models using Thermal Desktop®” ICES-2018-80, 48th

International Conference on Environmental Systems, Albuquerque NM, 2018.

6 Peabody, H., “Tracking Critical Thermal Metrics throughout the Life Cycle of a Large Observatory Thermal Model” ICES-

2020-298

OpenTD%20API%20Product
https://www.crtech.com/sites/default/files/files/Brochures/api.pdfProduct

