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With the release of Thermal Desktop 6.0, users now had the ability to interface with some 

of the many elements and constructs of a Thermal Desktop model through external 

applications developed using the TD API (Application Programming Interface). This file 

allows applications to be developed in the .NET framework and interface to a number of 

object types within a Thermal Desktop model. The release of 6.1 expands the subset of 

objects able to be manipulated and now includes the raw geometrical information of 

surfaces. With the release of 6.1, the API was now referred to as OpenTD. This paper 

discusses some of the utilities and capabilities developed using the OpenTD API at the NASA 

Goddard Space Flight Center. These include utilities to help with configuration control of 

models and case sets, addition of logic to better process heater performance, and a 

methodology implemented to allow for submodel level processing of radiation couplings to 

include smaller radks where needed in a cryogenic region without using the same criteria for 

the warmer portions of the model. This last utility is targeting a reduction in run time 

without sacrificing accuracy. Lastly, some lessons learned, work-arounds, and wishes for the 

next release of the OpenTD API are also presented. 

Nomenclature 

ASCII = American Standard Code for Information Interchange MLI = Multi-Layer Insulation  

API = Application Programming Interface NASA = National Aeronautics and Space Administration 

GMM = Geometric Math Model SINDA = Systems Integrated Numerical Difference Analyzer 

GSFC = Goddard Space Flight Center TMM = Thermal Math Model 

GUI = Graphical User Interface UV = UltraViolet 

IR = InfraRed VB.NET = Visual Basic.NET programming language 

I. Introduction 

hermal Desktop® is an analysis tool commonly used by NASA-GSFC for the thermal modeling of spacecraft 

and instruments. It utilizes the AutoCAD program as the front end and graphical user interface to allow analysts 

to construct geometric math models (GMM, which are used to compute radiative exchange factors and radiative 

heatloads from external sources) as well as generating a network thermal math model (TMM, which is solved to 

predict temperatures). Thermal Desktop is one tool in a suite of tools from the vendor that allows analysts to tailor 

the tools they need for particular analysis types. Thermal Desktop provides for the front end building of thermal 

models and post processing of thermal results; RadCAD extends the capabilities to include Monte Carlo ray tracing 

computations for radiative exchange and orbital heating; SINDA/FLUINT solves the thermal network model to 

generate temperatures; FloCAD allows users to construct graphical representation of flow entities in Thermal 

Desktop to construct coupled fluid-thermal models. 

However, being in AutoCAD does come with a limitation; the thermal model data is stored in a proprietary, 

binary format and is not directly accessible to the end user unlike other tools that use an ASCII format to store 

model data. This limitation inhibits the ability of end-users to develop additional tools and capabilities that can 

interface directly with the thermal model data. To address this limitation, the software vendor has recently added an 

application programming interface (API) that exposes selected data to the user through a dynamic linked library that 

interfaces with an AutoCAD application instance with the specified drawing file open. 

The original introduction of this capability was provided with the 6.0 release of Thermal Desktop (known as the 

TDAPI) and was limited to a fairly large subset of entity types. These included: Nodes, Lumps, Paths, Ports, Pipes, 
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Ties, Optical Properties, ThermoPhysical Properties, CaseSets, Symbols, Heaters, Heat Loads, Layers, and 

Submodels. Notably missing from this list, however, are surfaces which form the heart of both the GMM and TMM 

data. The original TDAPI was developed to aid in the conversion of SINAPS models into Thermal Desktop as the 

software vendor was retiring the SINAPS application around the same time, since most of the SINAPS capabilities 

could now be duplicated using the aforementioned FloCAD application. Examining the list of supported entities 

shows a close alignment with the fluid constructs that would be common in a SINAPS model. 

The release of Thermal Desktop v6.1 added access to the surface data and the API was renamed as the OpenTD 

API1,2. This paper describes some of the features in the API, how to access them, and some utilities that were 

developed in Visual Basic .NET at NASA-GSFC using the API. These include utilities to better evaluate heater 

performance, capture model documentation information, and further filter radiation coupling terms for thermal 

model run time optimization. 

II. Basic API Structure 

The API is accessed by including a reference to the OpenTDv61.dll (or alternatively the TDAPIV1.dll if using 

6.0) in the project. The OpenTD API was developed in C#.NET and is compatible with any other languages that are 

compatible with the .NET framework. Including the reference allows for variables to be created based on the 

OpenTDv61 namespace. To establish a connection with Thermal Desktop, a variable of ThermalDesktop type is 

created (e.g. Dim TD as New OpenTDv61.ThermalDesktop). Once created, the drawing file to be accessed is 

specified by setting the TD.ConnectConfig.DwgPathname property. Following this with a call to the 

TD.Connect() method establishes the link with either an existing AutoCAD application that is already open with 

the specified drawing file or creates a new instance in which the specified drawing file is subsequently opened. At 

this point, all of the exposed data is now available for further investigation or manipulation. 

Further variable types may be created on the program side to hold data retrieved from the model in Thermal 

Desktop. For example, declaring a variable as a list of CaseSet type [Dim CaseSets As List(Of OpenTDv61. 
CaseSet)] allows the variable to be populated by all the CaseSets in the model via a call to the GetCaseSets 

method [CaseSets = TD.GetCaseSets()]. Alternatively, if a CaseSet name is already known, a variable to hold 

the CaseSet can be declared [Dim MyCaseSet As OpenTDv61.CaseSet] and then populated with a call to the 

GetCaseSet method [MyCaseSet = TD.GetCaseSet(“Cold Case”)]. It should be noted that the CaseSet name 

is expected to be unique and is the identifier by which the API identifies the CaseSet. If two CaseSets are identically 

named, the results are uncertain as to which one would be associated with the variable. If a CaseSet variable is 

modified on the program side, any updates must be committed to the Thermal Desktop application by a call to the 

Update method [MyCaseSet.Update()]. If a new CaseSet is to be created, the CreateCaseSet method should be 

used with a unique name as the argument [MyCaseSet = TD.CreateCaseSet(“New_CaseSet”)]. Lastly, to 

delete a CaseSet, the DeleteCaseSet method should be used [TD.DeleteCaseSet(“New_CaseSet”)]. Similar 

Get---s, Get---(), Create---(), and Delete---() methods exist for most of the other object types listed above (e.g. 

optical property, symbol, etc). The basic process for making changes to a model would be the same regardless of the 

entity type; (1) retrieve the object from the AutoCAD instance and store in the appropriate variable type, (2) make 

the desired updates to the variable, and (3) commit the changes to the AutoCAD instance with the Update method. 

If data is only being retrieved from the AutoCAD instance and is then manipulated and organized only on the 

program side, then the last Update step is not necessary.  

To access surface properties, a different method is employed since the Get/Set type methods currently do not 

exist to retrieve all geometric surface type (e.g. rcCone). Instead, a generic approach utilizes the IDbIterator 

object to step through the AutoCAD database and retrieve the objects sought. To accomplish this, a variable of 

IDbIterator type must first be created and set using a call to the CreateDbIterator method of a 

ThermalDesktop object. Next, variables and lists of variable types sought should be declared. Then, a WHILE loop 

should be established that continues until the .Done method returns a true value. While in the loop, the object type 

sought should be set via the DBObject call to the IDbIterator variable. If this returns back a value that is not null 

(Nothing), then the current object meets the type sought and it can be extracted and added to a List Of type variable 

or modified directly. Lastly, a call to the .Step method advances to the next object in the database. A snippet of 

code is shown in Figure 1 that would retrieve all rcRectangle type objects and store them in a List of rcRectangle. 

These functions and capabilities have already been utilized to develop utilities to assist with model modification, 

model documentation, and filtering of radiation couplings and will be used to develop future capabilities as 

additional needs are identified.  Users interested in exploring the OpenTD API are encouraged to begin with the 

“Getting Started with OpenTD 61.pdf” file2 included with the Thermal Desktop installation. 
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III. Evaluating Heater Performance 

Heaters are a common entity type in thermal analysis. However, capturing the performance of a heater 

throughout a thermal analysis simulation can be challenging. Typically, predictions from a transient simulation are 

output periodically, but it is highly unlikely that this output cadence will align with each and every heater in a 

model. Therefore, it is preferable to output each heater’s critical data (sensing temperature, power state) every 

timestep. Unfortunately, this is not a native capability provided by commercial thermal solvers at this time. To 

varying degrees, commercial solvers track some metrics and provide a composite value at the end of the run, such as 

number of cycles, average power, peak temperature, etc. However, this data may be insufficient for evaluation of 

tight stability requirements, in particular over varying ranges of time (e.g. stability over 180 s, over 2 hours, etc). 

A routine was developed to evaluate the CondCap file produced by Thermal Desktop and extract heater 

information, including: name, on point, off point, available power, sensing temperature, and applied power, with the 

latter two varying over time. Based on this processing, SINDA logic is generated that outputs the time varying 

heater parameters (sensing temperature and applied power) at each timestep and tags the output lines with a prefix to 

allow easy extraction of the relevant lines from the output file. This logic file is then included in the TMM input file 

prior to model execution. A similar capability was also developed to process the heat load dissipations and the 

average temperature where the load is applied. A corollary routine was developed to extract these lines based on the 

aforementioned tags and import the data into Microsoft Excel® for further processing. The data is imported into a 

new workbook based on a standard template that includes additional worksheets to facilitate plotting (Figure 2), 

tabular summaries of the heat loads (Figure 3) and the total power usage for the model. One considerable advantage 

of this approach is that it shows exactly what is in the TMM file. For large and complex Thermal Desktop models, it 

can be difficult to fully understand the configuration in a CaseSet with all the dependencies on symbols and logic. 

    Dim DB As OpenTDv61.IDbIterator 
    Dim Rectangles As List(Of OpenTDv61.RadCAD.Rectangle) 
    Dim Rectangle As OpenTDv61.RadCAD.Rectangle 
    DB = TD.CreateDbIterator 
    While Not DB.Done 
      Rectangle = DB.DbObject 
      If Not IsNothing(Rectangle) Then Rectangles.Add(Rectangle) 
      DB.Step() 
    End While 

Figure 1. Code snippet to retrieve all rcRectangles: Accessing geometric entities requires stepping through the 

AutoCAD database to find objects matching the type sought 

 

 
Figure 2. Sample Heater Plotting Up to 4 heaters may be plotted simultaneously with sensing temperature on 

the primary axis and heater power on the secondary axis 
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Although this capability does not explicitly utilize the OpenTD API, it was later added as an option to 

automatically add the heater processing logic when executing a model using the API.  This is discussed further in 

Section IV. 

IV. Model Documentation 

Model documentation is a fairly tedious process. Thermal model data is not neatly compartmentalized into 

discrete “cards” or “blocks” like finite element models (one card for nodes, one card for materials, one card for 

elements, etc). Thermal data can include heaters, conductors, heat loads, optical properties, material properties, etc 

Any of these entities may also have a further dependence on symbols. Likewise, symbols may also have 

interdependencies on other symbols making it difficult to ascertain a given symbol’s value without tracking all the 

relationships. Furthermore, CaseSets can include over-rides for symbols, optical properties, and thermophysical 

properties that are only applicable to that specific case. For example, a cold case might include Beginning of Life 

optical properties as well as lower values for heat dissipations whereas a hot case may include End of Life optical 

properties and higher values for dissipations. These values may be defined only in the CaseSet or they may be 

defined in symbols that depend on another symbol to indicate the configuration (e.g. a state flag). 

A VB.NET framework was developed including functions to extract optical property values, thermophysical 

property values, symbol values, and model notes directly from the base drawing file. Additional functions were also 

developed to extract the same information for a specified CaseSet based on the values in the over-rides. For the 

optical property extraction, the UV and IR Absorptivity, Reflectivity, and Transmissivity as well as the specular 

percentages for reflectance and transmittance are extracted for each property with the IR absorptivity serving as the 

emissivity. It should be noted that with the current version of the API, there is not the ability to identify the current 

optical property and thermophysical property files used by the drawing file; therefore, it is possible to extract the 

optical property and thermophysical property values, but the associated filename is not available. However, for 

CaseSet property over-rides, the specified filenames are available. Sample output of optical property data is shown 

in Figure 4. For thermophysical properties, the possibility exists for both anisotropic thermal conductivity as well as 

temperature dependent thermal conductivity and specific heat. Furthermore, the density and MLI effective 

emissivity values are also extracted Sample output is shown in Figure 5. 

 
Figure 4. Sample Optical Property Extraction from Thermal Desktop Model Optical property values are listed 

along with source file (if available). 

 
Figure 3. Sample Heater and Dissipation Summary Heatload and heater information is output to summary table, 

including min, average, and max power, heater on/off points, duty cycle, etc 
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For symbols, the challenge exists that the API only provides access to the symbol expression and not its evaluated 

value. The evaluation of symbols, which can have very complex inter-dependencies including (Expr) ? TrueVal: 

FalseVal type logic, would require considerable development to evaluate based purely on the data available through 

the API. However, a work-around was employed that creates a temporary CaseSet and generates the CondCap file, 

which includes all the symbols as well as their evaluated values in the header comment block. This file is then 

processed and the connections established between symbol name, group, expression, comment, and evaluated value 

This approach allows Thermal Desktop to use its built in capabilities that evaluate all the symbol inter-dependencies 

to evaluate a symbol’s value and does not rely on reinventing the well tested code within Thermal Desktop. For the 

nominal drawing symbol extraction, all the Symbols are included in the output. However, for a CaseSet symbol 

over-ride extraction, the evaluated symbol values are compared to the base values and if no differences exist, then 

only the symbols affected by the over-rides are output. This makes for a much smaller subset of values rather than 

the entire set of symbols but does include any symbols that are over-ridden as well as symbols whose evaluated 

values also depend on the over-rides. Figure 6 shows sample output for the symbol extraction for a specified 

CaseSet.  A similar work-around could also potentially be used to extract the thermophysical and optical property 

filenames from the CondCap file, alleviating the aforementioned limitation that the files referenced by the drawing 

file were not available through the API.   

Lastly, the development of a generic routine to extract tagged data (e.g. lines beginning with a specified string) 

and import them into Excel (similar to the heater and dissipation lines) further allows for user specified logic to be 

included to output data of particular interest at each timestep and extracted to Microsoft Excel.  

 
Figure 6. Sample Symbol Extraction from Thermal Desktop Model (CaseSet) Note that while BUS_SCESTAR is 

not explicitly over-ridden, its evaluated value depends on HOT, which is explicitly over-ridden The CaseSet and 

drawing file are also identified. 

 

 
Figure 5. Sample Thermophysical Property Extraction from Thermal Desktop Model Thermophysical property 

values (including temperature dependence and anisotropy) are listed along with source file (if available). 
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V. Radiation Coupling Filtering 

Early in the Wide Field InfraRed Survey Telescope program, as concerns grew regarding model run time, a 

hybrid radiation coupling filtering approach was proposed3. This hybrid approach would output two (or more) sets 

of radiation couplings with different filter criteria (Bij Cutoffs, Bij Sums) but from the same computation run. Then, 

couplings would be extracted connected to a subset of nodes from one set and all but the subset of nodes from the 

second set. This approach resulted in sufficient detail for a cryogenic region (where smaller radiation couplings may 

be more significant) while not needing the small radiation couplings throughout the model and increasing the 

associated run time. Although the project did not implement this as a matter of course due to the frequent updating 

of the model and the effort required to configure the model for this, it was recently revisited with the availability of 

the OpenTD framework due to the ability to automate this process using the API. 

 Aside from being able to modify and manipulate objects with the OpenTD API, a user also has the ability to 

execute CaseSets using the .Run method. Therefore, code was developed to execute a user specified CaseSet with 

some modifications to the execution process. First, the function allowed for the execution of the model in its own 

directory based on the CaseSet name. Determining the directory requires some care as the model may be written to 

the same location as the drawing file, or if defined by the .UserDirectory properties may be in an alternate 

directory. The usage of “..\” and “.\” relative path type syntax also complicates determination of the intended 

directory for model execution as these locations need to be resolved relative to the specified drawing file. A function 

was developed to determine this directory for a specified CaseSet. Once determined, this CaseSet subdirectory is 

created and after the input file is created, a copy of the input file is placed into the newly created directory. 

Furthermore, a paths.txt file is also created in the directory pointing back to the location of all files included via 

INSERT directives by SINDA. An option was also provided to allow the user to add the heater processing logic 

automatically as described in Section III. 

Having developed the capabilities to manipulate 

parts of the model execution process, a second routine 

built on this ability and added radiation coupling 

filtering as an option. This filtering process is illustrated 

in Figure 7. The top portion shows four available levels 

of filtering, where each filter includes: Pattern, Bij 

Cutoff, Bij Sum, and filtered Radk Filename.  The user 

also specifies the CaseSet and base Radk Filename, 

which identifies which RadiationTask in the CaseSet 

should be used to spawn the additional RadiationTasks 

with the new Bij Cutoff, Bij Sum, and output filenames 

as specified by the user. The updated CaseSet is then 

executed and the additional radk output files are created 

based on the new Bij Cutoff and Sum values. These 

output files are then further processed and all couplings 

connected to nodes not included in the pattern are 

removed. For the example in Figure 7, the pattern for 

filter A is MS, and only couplings connected to a 

submodel with MS are kept. The pattern for filter B is 

BP, and only couplings connected to BP are kept, 

unless they are also connecting MS and BP nodes, since 

these were already included in processing filter A. 

Figure 7 shows the couplings removed in strikethrough 

and couplings that are kept in bold red. This process 

repeats for filters C and D if applicable. Lastly, any 

couplings connected to nodes not meeting any of the 

pattern matches are output from the base RadiationTask 

output and its filter criteria, which should be less 

stringent than all the other RadiationTasks that were 

spawned. The end result is multiple radk files, but with 

fewer total radiation couplings.  Smaller couplings are 

kept only for portions of the model where the benefits 

are justified. 

 
Figure 7. Sample Process for Radk Filtering: The first 

file removes all couplings not connected to the pattern. 

Subsequent files must also account for couplings already 

included from previous filter steps. In this example, MS 

couplings are kept from the 98% file, and BP couplings 

are kept from 95% file as long as they were not already 

kept from MS processing. All remaining nodes not 

matching any patterns are captured last. 
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VI. Framework and Interface 

The various capabilities described in this paper form the framework of functions listed in Table 1.  The goal was 

to minimize, as much as possible, the need for a graphical interface to access the capabilities of the framework, 

allowing the user to develop their own interface to the framework capabilities. Entries in italics utilize the OpenTD 

API, while the others are utility functions that do not require a connection to the API.  
Framework Function Purpose 

GenerateHeaterDissipationLogic 

Process SINDA .inp file and add logic to .htr file to output Heater and Dissipation 

output logic for every timestep 

ProcessHeaterDissipationResults 

Process SINDA .out file and retrieve output generated from 

GenerateHeaterDissipationLogic and import into Excel template workbook 

ExtractTaggedLinesAndImportIntoExcel 

Extract lines beginning with TagID from OutFile and import into specified Excel 

location, parsing on specified delimiter 

ImportFileIntoExcel Import specified text file into specified Excel location, parsing on delimiter 

EvaluateSymbolsInDWGFile 

Generates temporary case set, outputs CC file and processes this for evaluated 

symbol values 

EvaluateSymbolsForSpecifiedCaseSet 

Generates temporary case set spawned from user specified case, outputs CC file 

and processes this for evaluated symbol values 

ExtractSymbolEvaluatedValuesFromCCFile Process CC file header and retrieves symbol names and evaluated values 

Write2DArrayToCSVFile 

Convert 2D array to comma-separated value output file (can include Header row 

and Output Mask) 

GetTDOptProps 

Read TD object and extract optical properties and store in 

GMM_OpticalProperties collection 

GetTDThermoProps 

Read TD object and extract thermophysical properties and store in 

GMM_ThermophiysicalProperties collection 

GetTDNotes 

Read TD object and extract Notes data and Splice together all Tabs into single 

output text file 

GetTDRunDirectory 

Return path to either DWG file if No CaseSet specified with UserDirectory, or to 

UserDirectory 

RunSpecifiedCaseSet 

Execute case set in its own directory with options to add heater dissipation and 

convergence trace logic 

CreateSubmodelSpecificRadiationTasks 

Create multiple Radiation Tasks with various Bij Sum/Cutoff and then filters 

output files for associated specified submodels/ patterns 

Table 1 – List of Function in GSFC Developed Framework 
 

A simple Graphical User Interface (GUI) was developed at GSFC to facilitate easier usage of the functions in the 

framework with efforts made to minimize the amount of “action” code associated with the GUI controls (e.g. a 

button click simply passed a textbox value to a framework function rather than having the framework capability 

defined in the button click event). This GUI is depicted in Figure 8. 

 
Figure 8. Simplistic Graphical User Interface to access framework functions: A simplistic interface was 

developed to more easily specify files and parameters to access the framework capabilities 
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VII. Limitations and Workarounds 

Aside from some of the workarounds described earlier, such as extracting evaluated symbol values and baseline 

property file names from the generated .cc file, some additional workarounds were found to further access data not 

yet exposed by the API.  One of the major limitations of the API for version 6.1 is the lack of access to existing 

Finite Element data, prevalent in many Thermal Desktop models.  Elements may be created, but existing elements 

cannot currently be polled to inspect or extract their data.  However, a methodology was developed that can 

determine: (1) the nodes used to form an element and their locations, (2) the thickness, (3) material, (4) material 

orienter assigned, (5) the optical properties assigned to the top and bottom sides, (6) the assignment of active sides 

for each radiation analysis group, and (7) the assignment of MLI on top and bottom.  At the heart of this method is 

the use of the entity handles (the unique identifiers for each object in the AutoCAD database) as well as the ability to 

send commands and retrieve the command history through the API.  While this process is neither efficient nor quick, 

it is at this time the only way known to access the Finite Element data. 

To begin, the DBIterator should be used to step through the entire database, one object at a time.  Each object 

includes both a Type property and a Handle property.  Knowing the object type, allows an application to select how 

to access data associated with the object.  Knowing the Handle allows the object to be selected using API methods 

or AutoLISP code to interface with the AutoCAD instance.  Use of the SendCommand method of the API in 

combination with the handent AutoLISP function and the LIST AutoCAD command will execute the command and 

send the output to the AutoCAD text window [e.g. TD.SendCommand("list (handent ""A1A1A"") ") ].  The 

GetCommandHistory method of the API retrieves a string of the result of the sent commands.  This text can then be 

parsed to extract the node numbers, material, thickness, and material orienters.  Knowing the node numbers, the API 

can then access the XYZ locations in space.  Unfortunately, the LIST output for a Finite Element does not include 

any further information about the radiative properties, so an alternate method must be used to access that data. 

To extract the radiative activity, optical property assignments, and application of insulation information, a model 

check from the Thermal Desktop interface (Output Node Optical Property Summary) can be executed that indirectly 

provides this information in the form of an Excel spreadsheet.  Fortunately, the API does include the ability to 

specify the active Radiation Analysis Group and SendCommand can be used with rcOutputNodeOpticsSummary and 

rcOutputAnalGroupSummary to generate the Excel files.  Data included in the OpticsSummary spreadsheet is for the 

current active Radiation Analysis Group and includes: (1) node number, (2) optical property, and, most importantly, 

(3) object type, handle, and side (e.g. Quad Elem-TOP::A1A1A).  If a node number is associated with an element, 

but is not used to define the element, it can be inferred that this node must be an insulation node.  For example, node 

100001 is found for element A1A1A, but the element is made up of nodes 1, 2, 3, and 4.  Since finite elements do 

not allow partial insulation to be assigned, the other nodes associated with element A1A1A can be used to determine 

the insulation offset.  Lastly, the radiative activity can be inferred from this file based on which node numbers are 

found in the file, as it only includes surfaces assigned to the active Radiation Analysis Group.  Varying the active 

group and evaluating each of the spreadsheets generated would allow the full radiative activity to be defined.  The 

AnalysisGroup spreadsheet output includes the active sides for all groups associated with the node numbers. 

The above method has been preliminarily tested, but has not yet been robustly developed at GSFC.  Once 

development is complete, this method will be integrated into a previously developed framework for the conversion 

of geometrical models4.  With the geometric data stored in an application, metrics could then be used to establish if 

two surfaces in different models are indeed identical (e.g. same shape, location, size, nodes, etc) even with differing 

handles.  This could be used to ensure consistency between delivered and integrated models (independent of their 

assigned handles) by comparing all surfaces, conductors, contactors, heatloads, etc.  Furthermore, this ability could 

also allow for the import of Domain Tag Sets from a source model to the destination model.  By identifying the 

properties of surfaces in a source Domain Tag Set and comparing them to surfaces in a destination model, the 

Domain Tag Set could then be redefined in the destination model. 

One last capability that is not inherently available in the API is the ability to turn on or off the local display of a 

specific entity.  Furthermore, there is currently no dedicated API method to determine the global visibility for a 

given entity type.  However, again the use of the SendCommand method can be employed with the 

rcToggleSurfaceVis command (or any of the other rcToggle commands).  By sending this command twice, it results 

in no change to the global visibility, but the resultant text can be extracted using GetCommandHistory and parsed to 

determine the current visibility state.  Furthermore, the use of the handent AutoLISP routine in combination with the 

SendCommand method and the rcVisOn and rcVisOff commands would allow for the local visibility of an object to 

be specified based on its handle.  This could allow for the save and retrieval of dedicated views of specific geometry 

or other thermal objects and could be further extended to include the view direction and magnification for saved 

views, which may be useful in the generation of consistent images for reports or presentations. 
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VIII. Conclusions and Path Forward 

The introduction of an API to access the internal parameters of a Thermal Desktop model provides users with an 

immense amount of power to further the capabilities of the software. Already this API has been used in the 

development of the Veritrek tool5 and by the European Space Agency to improve model exchange via the STEP-

TAS protocol. Early usage of the API has also improved productivity at GSFC, allowing external modification of 

Thermal Desktop generated files prior to model execution to improve the output of heater and dissipation 

performance as well as to allow the extraction and capture of thermal model data such as properties, symbols, and 

notes. Furthermore, the ability to filter radiation couplings based on submodel or pattern specific cutoff and sum 

values can result in smaller matrices for the thermal solver without sacrificing accuracy in areas where radiation heat 

exchange is critical, such as a cryogenic region, thus improving model run time. The utilities developed in the 

framework as well as other external tools have been used extensively to capture results and configuration details of a 

large scale observatory as the design evolved6 to track the impact of updates on the thermal performance.  

Future efforts are already envisioned to further develop productivity improvement utilities including CaseSet 

comparisons across more than two CaseSets as well as allowing symbol over-rides to be copied from one CaseSet to 

other CaseSets. The model conversion efforts4, began earlier, may also now be updated to support import and export 

of Thermal Desktop models. Some additional desired features that could be added to the API by the vendor include 

the ability to access post-processing data mappers through the API and the ability to pass a selection set of objects 

from the AutoCAD instance to the program through the API. With potential future additions to the API by the 

vendor, even more utilities can be conceived, such as standard image generation for reports and generation of 

comparison contour plots for thermal distortion mapping efforts.  While it is not covered in this paper, potential 

users should also be aware of a second aspect of the OpenTD API which addresses the processing of results files and 

is accessed through a second reference to the appropriate namespace. The long term plan for the development of 

these tools at GSFC is to provide the source code as open source in the hopes that other organizations may follow 

suit to improve the thermal analysis capabilities of the community at large. With the development and sharing of 

productivity enhancing utilities, the entire thermal community stands to benefit from the groundwork laid by the 

development of the OpenTD API with Thermal Desktop. 
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